Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T10:17:25.780Z Has data issue: false hasContentIssue false

Surface Mediation of NOx Reduction/Oxidation in A Plasma

Published online by Cambridge University Press:  15 February 2011

M.L. Balmer
Affiliation:
Pacific Northwest National Laboratory, Richland, WA 99352, Iou.balmer@pnl.qov
R.G. Tonkyn
Affiliation:
Pacific Northwest National Laboratory, Richland, WA 99352, Iou.balmer@pnl.qov
I. Yoon
Affiliation:
Pacific Northwest National Laboratory, Richland, WA 99352, Iou.balmer@pnl.qov
A. Kolwaite
Affiliation:
Pacific Northwest National Laboratory, Richland, WA 99352, Iou.balmer@pnl.qov
S.E. Barlow
Affiliation:
Pacific Northwest National Laboratory, Richland, WA 99352, Iou.balmer@pnl.qov
T.M. Orlando
Affiliation:
Pacific Northwest National Laboratory, Richland, WA 99352, Iou.balmer@pnl.qov
J. Hoard
Affiliation:
Ford Research Labs, Dearborn, MI
Get access

Abstract

NOx reduction efficiency under simulated lean burn conditions is examined for a nonthermal plasma in combination with borosilicate glass, alumina, Cu-ZSM-5 and Na-ZSM-5. The non-thermal plasma alone or with a packed bed of borosilicate glass beads converts NO to NO2 and partially oxidizes hydrocarbons. Alumina and Na-ZSM-5 reduce a maximum of 40% and 50% of NOx respectively; however, the energy cost is high for Na-ZSM-5. Cu-ZSM-5 converts less than 20% with a very high energy consumption.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Non-Thermal Plasma Techniques for Pollution Control, part A and B, edited by Penetrante, B.M. and Schultheis, S.E., Springer Verlag, London, 1992.Google Scholar
2. Plasma Exhaust Aftertreatment, SAE SP-1395, Society of Automotive Engineers, Warrendale, PA, 1998.Google Scholar
3. Isogai, K., Japanese Patent Hei 6-106125, April 19, 1994.Google Scholar
4. Isogai, K., Japanese Patent Hei 6-15143, Jan 25, 1994.Google Scholar
5. Steinwandel, J., Hoschele, J., and Staneff, T., German Patent DE 19510804A1, Mar. 24, 1995.Google Scholar
6. Yamamoto, T., US Patent 5,609,736, Mar. 11, 1997.Google Scholar
7. Hoard, J., US Patent 5,746,984, May 5, 1998.Google Scholar
8. Kieser, J., Klein, M., Lins, F., Seebock, R., and Michael, R., German Patent DE 4416676A1, May 11, 1994.Google Scholar
9. Siemens AG, German Patent DE 9407861U1, Nov. 30, 1995.Google Scholar
10. Raybone, D., Bayliss, K.H., Hall, S.I., UK Patent GB 2274412, Dec. 14, 1993.Google Scholar
11. Vogtlin, G.E., Merritt, B.T., Hsaio, M.C., Wallman, P.H., and Penetrante, B.M., U.S. Patent # 5,711,147, Jan. 27, 1998.Google Scholar
12. Shimizu, K. and Oda, T., Denki Gakki Hoden Kenkyuaki Shiryo, vol. ED–97, no. 209-225, pp. 3944, 1997.Google Scholar
13. Tonkyn, R.G., Barlow, S.E., Balmer, M.L., Orlando, T.M., Hoard, J., and Goulette, D., SAE 971716, 1997.Google Scholar
14. McLarnon, C.R. and Penetrante, B.M., SAE 982434, 1998.Google Scholar
15. Penetrante, B.M., Brusasco, R.M., Merritt, B.T., Pitz, W.J., Vogtlin, G.E., Kung, M.C., Kung, H.H., Wan, C.Z., and Voss, K.E., SAE 982508, 1998.Google Scholar
16. Balmer, M., Tonkyn, R., Kim, A., Yoon, S., Jimenez, D., Orlando, T., and Barlow, S.E., SAE 982511, 1998.Google Scholar
17. Tonkyn, R.G., Barlow, S.E., and Orlando, T.M., J. Appl. Phys., 80 (9), Nov. 1, 1996.Google Scholar
18. Hamada, H., Catalysis Today, 22, pp. 2140, 1994.Google Scholar
19. Hoard, J. and Balmer, M.L., SAE 982429, 1998.Google Scholar
20. Yokoyama, C. and Misono, M., Journal of Catalysis, 150, 917, 1994.Google Scholar