Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T01:08:17.587Z Has data issue: false hasContentIssue false

Surface Photochemically Activated Chemical Vapor Deposition of Patterned Aluminum Thin Films

Published online by Cambridge University Press:  28 February 2011

G. S. Higashi
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave. Murray Hill, N.J. 0797-1
G. E. Blonder
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave. Murray Hill, N.J. 0797-1
C. G. Fleming
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave. Murray Hill, N.J. 0797-1
Get access

Abstract

KrF excimer laser (248 nm) images of mask patterns have been Iused to photochemically activate tihe surface catalytic decomposition of triisobutylaluminum (TIBA). The activation step is shown to involve the photolysis of organoaluminum surface adlayers leading to the formation of reactive Al sites. These sites serve to selectively nucleate the thermal decomposition of TIBA which results in the growth of high quality Al filns (resistivities ∼5 μΩ-cm). The growth on the chemically inert surfaces of SiO2 and Al2O3 is extremely selective and results in patterns with resolutions ∼2 μm. To evaluate the utility of this process for real circuit applications, the laser activated deposition technique has been used in conjunction with standard photolithographic processing to fabricate metal-oxide field effect transistors and Al interconnects. The successful fabrication of working devices indicates that the laser activated deposition technique is compatible with standard photolithographic patterning schemes and may provide a means for simplifying integrated circuit fabrication.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ehrlich, D.J., Osgood, R.M. Jr, Silversmith, D.J. and Deutsch, T.F., IEEE Electron Dev. Lett., EDL–1, 101(1980); J.N. Randall, D.J. Ehrlich and J.Y. Tsao, J. Vac. Sci. Technol. B, B-3, 262(1985); M.M. Oprysko, M.W. Beranek and P.L. Young, IEEE Electron Dev. Lett., EDL-6, 344(1985).Google Scholar
[2] Tsao, J.Y., Ehrlich, D.J., Silversmith, D.J. and Mountain, R.W., IEEE Electron Dev. Lett., EDL–3,164(1982); Bruce M. McWilliams, Irving P. Herman, Fred Mitlitsky, Roderick A. Hyde and Lowell L. Wood, Appl. Phys. Lett. 43, 946(1983).Google Scholar
[3] Yokoyama, H., Uesugi, F., Kishida, S. and Washio, K., Appl. Phys. A, A–37 25(1985).Google Scholar
[4] Tsao, J.Y. and Ehrlich, D.J., Appl. Phys. Lett., 45, 617(1984).Google Scholar
[5] Higashi, G.S. and Fleming, C.G., Appl. Phys. Lett., 48, 1051(1986).Google Scholar
[6] Cooke, M.J., Heinecke, R.A., Stern, R.C. and Maes, J.W.C., Solid State Technol., 25 62(December 1982); M.L. Green, R.A. Levy, R.G. Nuzzo and E. Coleman, Thin Solid Films, 114, 367(1984).Google Scholar
[7] Ehrlich, D.J., Osgood, R.M. Jr, and Deutsch, T.F., Appl. Phys. Lett., 36 698(1980); T. Arikado, M. Sekine, H. Okano and Y. Horiike, Mat. Res. Soc. Symp. Proc., 29, 167(1984); P.D. Brewer, D. McClure and R.M. Osgood, Jr., Appl. Phys. Lett., 47, 310(1985).CrossRefGoogle Scholar
[8] Deutsch, T.F., Fan, J.C.C., Turner, G.W., Chapman, R.L., Ehrlich, D.J. and Osgood, R.M. Jr, Appl. Phys. Lett., 38, 144(1981); P.G. Carey, T.W. Sigmon, R.L. Press and T.S. Fahlen, IEEE Electron Dev. Lett., EDL-6 291(1985).CrossRefGoogle Scholar
[9] Boyer, P.K., Roche, G.A., \Ritchie, V.H. and Collins, G.J., Appl. Phys. Lett., 40 716(1982).Google Scholar