Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T06:53:03.219Z Has data issue: false hasContentIssue false

Synthesis and Optical Properties of Silicon Oxide Nanowires

Published online by Cambridge University Press:  01 February 2011

Bernard Gelloz
Affiliation:
Institut de Recherche Interdisciplinaire (IRI), Institut de Recherche Interdisciplinaire (IRI), IRI c/o IEMN, Cité Scientifique, Avenue Poincaré-B.P.60069, Villeneuve d'Ascq, N/A, France, Metropolitan, +33 3 20 19 79 87
Yannick Coffinier
Affiliation:
yannick.coffinier@isen.iemn.univ-lille1.fr, Institut de Recherche Interdisciplinaire (IRI), IRI c/o IEMN, Cité Scientifique, Avenue Poincaré - B.P. 60069, Villeneuve d'Ascq, 59652, France
Billel Salhi
Affiliation:
billel.salhi@iemn.univ-lille1.fr, Institut de Recherche Interdisciplinaire (IRI), IRI c/o IEMN, Cité Scientifique, Avenue Poincaré - B.P. 60069, Villeneuve d'Ascq, 59652, France
Nobuyoshi Koshida
Affiliation:
koshida@cc.tuat.ac.jp, Tokyo University of Agriculture and Technology, Graduate School of Engineering, 2-24-16, Nakacho, Koganei,, Tokyo, 184-8588, Japan
Gilles Patriarche
Affiliation:
gilles.patriarche@lpn.cnrs.fr, Laboratoire de Photonique et de Nanostructures, route de Nozay, Marcoussis, 91460, France
Rabah Boukherroub
Affiliation:
rabah.boukherroub@iemn.univ-lille1.fr, Institut de Recherche Interdisciplinaire (IRI), IRI c/o IEMN, Cité Scientifique, Avenue Poincaré - B.P. 60069, Villeneuve d'Ascq, 59652, France
Get access

Abstract

The paper reports on the synthesis and structural characterization of amorphous silicon oxide nanowires (SiONWs). The nanowires were prepared using the solid-liquid-solid (SLS) technique and display an average mean diameter in the range of 20-150 nm and 15-20 μm in length. Energy dispersive spectrometry (EDS) analysis revealed that the nanowires consist of Si and O elements in a ratio of approximately 1:2. The result was corroborated by the presence of a single peak at around 103 eV in the X-ray photoelectron (XPS) spectrum. As-prepared SiONWs display blue photoluminescence (PL) centered ∼ 400 nm. The blue luminescence is inhomogeneous with an increase in the PL peak intensity by a factor of 1.8 at certain areas of the surface. Next, we have investigated the effect of high-pressure water vapor annealing (HWA) on the PL and found that while the PL became homogeneous, a decrease of its intensity by a factor 2 was observed. The origin of the blue emission could be attributed to defect centers of oxygen deficiency in the wires.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gelloz, B. and Koshida, N., in The Handbook of Electroluminescent Materials, edited by Vij, D. R. (Institute of Physics Publishing, Bristol, 2004), Chap. 10, pp. 393475 Google Scholar
2. Gelloz, B., Shibata, T. and Koshida, N., Appl. Phys. Lett. 89, 191103 (2006)Google Scholar
3. Pavesi, L., Negro, L. Dal, Mazzoleni, C., Franzo, G. and Priolo, F., Nature 408, 440 (2000)Google Scholar
4. Furukawa, S., Miyasato, T., Jpn. J. Appl. Phys. Part 2, 27, L2207 (1988).Google Scholar
5. Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
6. Lehmann, V., Gösele, U., Appl. Phys. Lett. 58, 856 (1991).Google Scholar
7. Lu, Z. H., Lockwood, D. J., Baribeau, J.-M., Nature 378, 258 (1995).Google Scholar
8. Lockwood, D. J., Phase Trans. 68, 151 (1999).Google Scholar
9. Zheng, T. and Li, Z., Superlatt. Microstruct. 37, 227 (2005).Google Scholar
10. Huang, Y., Duan, X. and Lieber, C. M., Small, 1, 142 (2005)Google Scholar
11. Cui, Y.; Lieber, C. M. Science 2001, 291, 851.Google Scholar
12. Tans, S. J., Verschueren, R. M., Dekker, C., Nature 393, 49 (1998)Google Scholar
13. Duan, X., Huang, Y., Agarawal, R., Lieber, C. M., Nature 421, 241 (2003)Google Scholar
14. Hu, J. T., Odom, T. W. and Lieber, C. M., Acc. Chem. Res. 32, 435 (1999).Google Scholar
15. Rao, C. N. R., Deepak, F. L., Gundiah, G. and Govindaraj, A., Prog. Solid-State Chem. 31, 5 (2003).Google Scholar
16. Gelloz, B., Kojima, A. and Koshida, N., Appl. Phys. Lett. 87, 031107 (2005)Google Scholar
17. Gelloz, B. and Koshida, N., J. Appl. Phys. 98, 123509 (2005)Google Scholar
18. Gelloz, B. and Koshida, N., Jpn. J. Appl. Phys., Part 1 45, 3462 (2006)Google Scholar
19. Xing, Y. J., Yu, D. P., Xi, Z. H. and Xue, Z. Q., Appl. Phys. A 76, 551 (2003)Google Scholar
20. Spadavecchia, J., Prete, P., Lovergine, N., Tapfer, L., and Rella, R., J. Phys Chem. B 109, 17347 (2005)Google Scholar
21. Wang, Y. W., Liang, C. H., Meng, G. W., Peng, X. S. and Zhang, L. D., J. Mater. Chem. 12, 651 (2002)Google Scholar
22. Pu, D. Y., Hang, Q. L., Ding, Y., Zhang, H. Z., Bai, Z. G., Wang, J.J., Zou, Y.H., Qian, W., Xiong, G.C. and Feng, S. Q., Appl. Phys. Lett. 73, 3076 (1998)Google Scholar
23. Liao, L. S., Bao, X. M., Li, N. S. and Min, N. B., Appl. Phys. Lett. 68, 850 (1996)Google Scholar
24. Qin, G. G., Lin, J., Guan, J.Q. and Yao, G. Q., Appl. Phys. Lett. 69, 1689 (1996)Google Scholar
25. Salhi, B., Gelloz, B., Koshida, N., Patriarche, G. and Boukherroub, R., Phys. Stat. Sol. (C) (accepted) Google Scholar