Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-29T02:24:41.052Z Has data issue: false hasContentIssue false

Synthesis of Crystalline Silicon Nanoparticles in Low-Pressure Inductive Plasmas

Published online by Cambridge University Press:  11 February 2011

Ameya Bapat
Affiliation:
Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455
Uwe Kortshagen
Affiliation:
Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455
Stephen A. Campbell
Affiliation:
Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455
Christopher R. Perrey
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
C. Barry Carter
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
Get access

Abstract

Amorphous silicon has been used for a wide variety of electronic applications including thin film transistors and energy conversion devices. However, these devices suffer greatly from defect scattering and recombination. A method for depositing crystalline silicon would be highly desirable, especially if it can be remotely created and deposited on any kind of substrate. Our work aims at synthesis and deposition of mono-disperse, single crystal silicon nanoparticles, several tens of nm in diameter on varied substrates. Synthesis of nanocrystals of 2–10 nm diameter has been previously reported but larger particles were amorphous or polycrystalline. This work reports the use of an inductively coupled low-pressure plasma to produce nanocrystals with diameters between 20–80 nm. Electron microscopy studies confirm that the nanocrystals are highly oriented diamond-cubic silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kruis, F. E., Fissan, H., Peled, A., J. Aerosol Sci. 29, 511535 (1998).Google Scholar
Ostraat, M. L. et al., Applied Physics Letters 79, 433435 (Jul 16, 2001).Google Scholar
Hahn, H., Averback, R. S., J. Appl. Phys. 67, 113 (1990).Google Scholar
4. Zachariah, M. R., Aquino, M. I., Shull, R. D., Steel, E. B., Nanostruc. Mater. 5, 383392 (1995).Google Scholar
5. Deppert, K., Bovin, J.-O., Malm, J.-O., Samuelson, L., J. Crystal Growth 169, 1319 (1996).Google Scholar
6. Rao, N. P. et al., J. Aerosol Sci. 29, 707 (1998).Google Scholar
7. Camata, R. P., Atwater, H. A., Vahala, K. J., Flagan, R. C., Applied Physics Letters 68, 31623164 (1996).Google Scholar
8. Bouchoule, A., Boufendi, L., Plasma Sources Sci. Technol. 2, 204 (1993).Google Scholar
9. Boufendi, L., Bouchoule, A., Plasma Sources Sci. Technol. 3, 263 (1994).Google Scholar
10. Courteille, C. et al., J. Appl. Phys. 80, 2069 (1996).Google Scholar
11. Watanabe, Y., Shiratani, M., Jpn. J. Appl. Phys. 32, 3074 (1993).Google Scholar
12. Kortshagen, U., Bhandarkar, U., Phys. Rev. E 60, 887 (1999).Google Scholar
13. Dorier, J.-L. et al., IEEE Trans. Plasma Sci. 24, 101 (1996).Google Scholar
14. Bouchoule, A., Boufendi, L., Plasma Sources Sci. Technol. 3, 293 (1994).Google Scholar
15. Morral, A. F.i., Brenot, R., Hamers, E. A. G., Vanderhagen, R., Cabarrocas, R. R. i., Journal of Non-Crystalline Solids 266–269, 4853 (2000).Google Scholar
16. Viera, G., Huet, S., Mikikian, M., Boufendi, L., Thin Solid Films 403, 467470 (2002).Google Scholar
17. Courteille, C., Dorier, J.-L., Dutta, J., Hollenstein, C., Howling, A. A., J. Appl. Phys. 78, 61 (1995).Google Scholar
18. Oda, S., Adv. Colloid Interfac. Sci. 71–72, 3137 (1997).Google Scholar
19. Lieberman, M. A., Lichtenberg, A. J., (1994).Google Scholar
20. Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B., Urban, K., Nature 392, 768769 (1998).Google Scholar
21. Haider, M., Rose, H., Uhlemann, S., Schwan, E., Kabius, B., Urban, K., Ultramicroscopy 75, 5360 (1998).Google Scholar
22. Lentzen, M., Jahnen, B., Jia, C. L., Thust, A., Tillmann, K., Urban, K., Ultramicroscopy 92, 233242 (2002).Google Scholar
23. Williams, D. B., Carter, C. B., Transmission Electron Microscopy: A Textbook for Materials Science (Plenum Press, New York and London, 1996).Google Scholar