Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T02:35:48.743Z Has data issue: false hasContentIssue false

Template-Assisted Fabrication of Double-Shelled Nanotubes Composed of Inner Shell Pb(Zr0.52Ti0.48)O3 and Outer Shell TiO2 by Sol-Gel Process with Spin-Coating Technique

Published online by Cambridge University Press:  14 March 2011

Y. C. Choi
Affiliation:
Department of Physics, Chonbuk National University, Jeonju 561-756, Korea
S. Y. Cho
Affiliation:
Department of Physics, Chonbuk National University, Jeonju 561-756, Korea
S. D. Bu*
Affiliation:
Department of Physics, Chonbuk National University, Jeonju 561-756, Korea
*
Get access

Abstract

Double-shelled nanotubes composed of inner shell Pb(Zr0.52Ti0.48)O3 (PZT) and outer shell TiO2 are successfully fabricated by a spin coating of each sol-gel solution on porous anodic alumina template. Field emission transmission electron microscopy images show that they have a ~ 10 nm wall thickness. The selected area electron diffraction patterns show that they have two mixed crystalline phases of tetragonal PZT and anatase TiO2. The analyses of scanning transmission electron microscopy equipped with energy dispersive X-ray spectroscopy confirm their uniform distribution of each element.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Scott, J. F., Morrison, F. D., Miyake, M., Zubko, P., Lou, X., Kugler, V. M., Rios, S., Zhang, M., Tatsuta, T., Tsuji, O., and Leedham, T. J., J. Am. Ceram. Soc. 88, 1691 (2005).Google Scholar
2. Nonnenmann, S. S., Gallo, E. M., Coster, M. T., Soja, G. R., Johnson, C. L., Joseph, R. S., and Spanier, J. E., Appl. Phys. Lett. 95, 232903 (2009).Google Scholar
3. Bharadwaja, S. S. N., Olszta, M., Troilier-McKinstry, S., Li, X., Mayer, T. S., and Roozeboom, F., J. Am. Ceram. Soc. 89, 2695 (2006).Google Scholar
4. Fan, H. J., Kawasaki, S., Gregg, J. M., Langner, A., Leedham, T., and Scott, J. F., Mater. Res. Soc. Symp. Proc. 1071, 1071–F01-07 (2008).Google Scholar
5. Liu, M., Li, X., Imrane, H., Chen, Y., Goodrich, T., Cai, Z., Ziemer, K.S., Huang, J. Y., and Sun, N. X., Appl. Phys. Lett. 90, 152501 (2007).Google Scholar
6. Xie, S. H., Li, J. Y., Qiao, Y., Liu, Y. Y., Lan, L. N., Zhou, Y. C., and Tan, S. T., Appl. Phys. Lett. 92, 062901 (2008).Google Scholar
7. Choi, Y. C., Kim, J., and Bu, S. D., Mater. Sci. Eng. B 133, 245 (2006).Google Scholar
8. Kim, J., Yang, S. A., Choi, Y. C., Han, J. K., Jeong, K. O., Yun, Y. J., Kim, D. J., Yang, S. M., Yoon, D., Cheong, H., Chang, K.-S., Noh, T. W., and Bu, S. D., Nano Lett. 8, 1813 (2008).Google Scholar
9. Huang, H., Li, D., Lin, Q., Shao, Y., Chen, W., Hu, Y., Chen, Y., and Fu, X., J. Phys. Chem. C 113, 14264 (2009).Google Scholar
10. Yan, C., Nikolova, L., Dadvand, A., Harnagea, C., Sarkissian, A., Perepichka, D. F., Xue, D., and Rosei, F., Adv. Mater. 22, 1741 (2010).Google Scholar
11. Jaffe, B., Cook, W. R. and Jaffe, H., "Piezoelectric Ceramics", (Academic Press, London, 1971).Google Scholar
12. Rajh, T., Ostafin, A. E., Micic, O. I., Tiede, d. M., andThurnauer, M. C., J. Phys. Chem. 100, 4538 (1996).Google Scholar
13. Kim, J. Y., Kim, D.-W., Jung, H. S., and Hong, K. S., Jpn. J. Appl. Phys. 44, 6148 (2005).Google Scholar
14. Jeong, K. O., Choi, Y. C., Kim, J., Han, J. K., Yang, S. A., and Bu, S. D., J. Korean Phys. Soc. 51, S105 (2007).Google Scholar