Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-03T23:37:07.877Z Has data issue: false hasContentIssue false

Test Rate Effects on The Mechanical Behavior of Thin Aluminum Films

Published online by Cambridge University Press:  10 February 2011

N. R. Moody
Affiliation:
Sandia National Laboratories, Livermore, CA 94551-0969
A. Strojny
Affiliation:
University of Minnesota, Minneapolis, MN 55455
D. Medlin
Affiliation:
Sandia National Laboratories, Livermore, CA 94551-0969
S. Guthrie
Affiliation:
Sandia National Laboratories, Livermore, CA 94551-0969
W. W. Gerberich
Affiliation:
University of Minnesota, Minneapolis, MN 55455
Get access

Abstract

In this study, we employed nanoindentation testing to determine load rate and load rate change effects on the plastic response of a single crystal aluminum sample and of an 80 nm thick vapor deposited aluminum film on a sapphire substrate. The load rate tests showed that the thin film plastic properties exhibited a much stronger dependence on loading rate than the properties of the aluminum single crystal. In contrast, the load rate change data indicated a weak dependence of thin film plastic properties on loading. Scanning probe microscopy showed that the difference in behavior can be attributed primarily to pileup effects on contact area which increased with contact depth and loading rate. When contact area was corrected for increased pileup height, plastic properties were reduced to single crystal aluminum values.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cao, H. C. and Evans, A. G., Acta Metall. Mater., 39, 2997 (1991).Google Scholar
2. Dalgleish, B. J., Trumble, K. P., and Evans, A. G., Acta Metall., 37, 1923 (1989).Google Scholar
3. Doener, M. F., Gardner, D. S., and Nix, W. D., J. Mater. Res., 1, 845 (1986).Google Scholar
4. Nix, W. D., Metall. Trans. A, 20A, 2217 (1989).Google Scholar
5. Raman, V. and Berriche, B., J. Mater. Res., 7, 627 (1992).Google Scholar
6. Stone, D. S. and Yoder, K. B., J. Mater. Res., 9, 2524 (1994).Google Scholar
7. Yoder, K. B., Stone, D. S., Lin, J. C., and Hoffman, R. A., in Thin Films: Stresses and Mechanical Proerties V, edited by Baker, S. P., Ross, C. A., Townsend, P. H., Volkert, C. A., and Borgesen, P., (Mater. Res. Soc. proc. 356, Pittsburgh, PA, 1995) p. 651656.Google Scholar
8. Doerner, M. F. and Nix, W. D., J. Mater. Res., 1, 601 (1986).Google Scholar
9. Oliver, W. C. and Pharr, G. M., J. Mater. Res., 7, 1564 (1992).Google Scholar
10. Lilleoden, E. T., Bonin, W., Nelson, J., Wyrobek, J. T., and Gerberich, W. W., J. Mater. Res., 10, 2162 (1995).Google Scholar
11. Gerberich, W. W., Nelson, J. C., Lilleoden, E. T., Anderson, P., and Wyrobek, J. T., Acta Mater., 44, 3585 (1996).Google Scholar
12. Li, J. C. M., Can. J. Phys., 45, 493 (1967).Google Scholar
13. Mayo, M. J. and Nix, W. D., Acta Mater., 36, 2183 (1988).Google Scholar
14. Lucas, B. N., Oliver, W. G., Pharr, G. M., and Loubet, J.-L., in Thin Films: Stresses and Mechanical Properties VI, edited by Gerberich, W. W., Gao, H., Sundgren, J.-E., and Baker, S. P., (Mater. Res. Soc. proc. 436, Pittsburgh, PA, 1995) p. 233238 Google Scholar
15. Ayres, R. A., Metall. Trans. A, 10A, 849 (1979).Google Scholar
16. Lloyd, D. J. and Kenny, D., Metall. Trans. A, 13A, 1445 (1982).Google Scholar
17. Tsui, T. Y., Ross, C. A., and Pharr, G. M., in Thin Films: Stresses and Mechanical Properties VI, edited by Gerberich, W. W., Gao, H., Sundgren, J.-E., and Baker, S. P., (Mater. Res. Soc. proc. 436, Pittsburgh, PA, 1995) p. 207212.Google Scholar