Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T06:58:49.405Z Has data issue: false hasContentIssue false

Theoretical Analysis of Homogeneity and Surface Degradation During Pulsed Electron Beam Annealing of GaAs and InP

Published online by Cambridge University Press:  22 February 2011

A. Laugier
Affiliation:
Laboratoire de Physique de la Matière (LA 358) Institut National des Sciences Appliquées de Lyon 20, Avenue Albert Einstein 69621 Villeurbanne Cedex (France)
D. Barbier
Affiliation:
Laboratoire de Physique de la Matière (LA 358) Institut National des Sciences Appliquées de Lyon 20, Avenue Albert Einstein 69621 Villeurbanne Cedex (France)
G. Chemisky
Affiliation:
Laboratoire de Physique de la Matière (LA 358) Institut National des Sciences Appliquées de Lyon 20, Avenue Albert Einstein 69621 Villeurbanne Cedex (France)
Get access

Abstract

PEBA induced thermal effects in GaAs and InP have been simulated. Monte-Carlo calculation has been used to determine universal electron energy loss functions in the 5–50 keV energy range for these materials. Similar electron depth-dose profiles of a polykinetic electron beam pulse is deduced in both GaAs and lnP. A simple adiabatic approach is sufficient to establish relationship between melting depths and fluences. Thermal effects homogeneity and surface degradation are discussed for both crystalline and amorphous materials using variable electron energy deposition profiles. Correlation is made between experimentally measured degradation thresholds and calculated fluence windows within which melting effects are expected.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

0. Mat.Res.Soc.Symp.Proc., vol.13, 1983, Elsevier Science PublishingGoogle Scholar
1.Williams, J.S., in ref.0, p. 621Google Scholar
2.Ahmed, H., Mc Mahon, R.A., in ref.0, p.653Google Scholar
3.Davies, D.E., Lorenzo, J.P., Ryan, T., Fitzgerald, J., Appl.Phys.Lett. 35, 631 (1979)Google Scholar
4.Bishop, H.E., Brit.J.Appl.Phys. 18, 703 (1967)Google Scholar
5.Barbier, D., Baghdadi, M., Laugier, A., Vicario, E., J.Microsc.Spectrosc.Electron. 6, 513 (1981)Google Scholar
6.Kamins, T.I., Rose, P.H., J.Appl.Phys. 50, 1308 (1979)Google Scholar
7.Poate, J.M., in ref.0, p.263Google Scholar
8.Moisson, J.M., Bensoussan, M., in ref.0, p.329Google Scholar