Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-14T23:33:27.339Z Has data issue: false hasContentIssue false

Thermal Analysis at Low and High Temperature and Evidence of Structural Transition Induced by Praseodymium in SrTiO3

Published online by Cambridge University Press:  26 February 2011

Alejandro Durán
Affiliation:
dural@ccmc.unam.mx, Universidad Nacional Autónoma de México, Centro de Ciencias de la Materia Condesada, Km 107 Carretera Tijuana-Ensenada, Ensenada, Baja California, United States, ++52 646 174 46 02
Francisco Morales
Affiliation:
fmleal@servidor unam.mx, Universidad Nacional Autónoma de México, Instituto de Investigación en Materiales, Mexico, 04510, Mexico
Luis Fuentes
Affiliation:
luis.fuentes@cimav.edu.mx, Centro de Investigacion de Materiales Avanzados (CIMAV), Chihuahua, 13109, Mexico
Javier Castro
Affiliation:
jcastro@uacj.mx, Universidad Autónoma de Cd. Juarez, Instituto de Ingenieria y Tecnologia, Ciudad Juarez, Chiuh., 32300, Mexico
Jesus Siqueiros
Affiliation:
jesus@ccmc.unam.mx, Universidad Nacional Autónoma de México, Centro de Ciencias de la Materia Condesada, Ensenada B.C., 22800, Mexico
Get access

Abstract

To explore the nature of ferroelectric behavior induced by Pr ion in the SrTiO3 ceramic, we brought together a combination of Synchrotron x-ray powder diffraction and thermal analysis. Rietveld analysis shows a clear peak splitting strongly suggesting a cubic-tetragonal structural transition when 15 % Pr substitutes the Sr site. To determine the temperature of the structural instability differential thermal analysis at high temperatures (30-900 °C) and specific heat at low temperatures (2-300 K) were performed. The difference in the heat capacity for Pr doped and undoped samples are very small. A plateau in Cp/T vs T at 110 K is a clear evidence of the competing effect of two kinds of order parameters, one represented by the polarization and the other by the rotation of the oxygen octahedral in the perovskite structure. Upon heating, DTA analysis shows an unexpected single endothermal broad anomaly at about 118 °C. The occurrence of this thermal anomaly could be related to displacive structural contributions providing unambiguous evidence of diffuse phase transition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Saifi, M. A., Cross, L. E., Phys. Rev. B 2, 677 (1970).Google Scholar
2. Müller, K. A., Burkard, H., Phys. Rev. B 19, 3593 (1979).Google Scholar
3. Schooley, J. E., Hosler, W. R., Cohen, M. L., Phys. Rev. Lett. 12, 474 (1964).Google Scholar
4. Morin, F. G., Wolfram, T., Phys. Rev. Lett. 30, 1214 (1973).Google Scholar
5. Johnson, D. W., Cross, L. E., Hummel, F. A., J. Appl. Phys. 41, 2828 (1970).Google Scholar
6. Yu, Z., Ang, C., Cross, L. E., Appl. Phys. Lett. 74, 3044 (1999).Google Scholar
7. Fleury, P. A., Scott, J. F., Worlock, J. M., Phys. Rev. Lett. 21, 16 (1968).Google Scholar
8. Uwe, H., Sakudo, T., Phys. Rev. B 13, 271 (1976).Google Scholar
9. Itoh, M., Wang, R., Inaguma, Y., Yamaguchi, T., Shan, Y. J., and Nakumura, T., Phys. Rev. Lett. 82 3540 (1999).Google Scholar
10. Bednorz, J. G., Muller, K. A., Phys. Rev. Lett. 52 2289 (1984).Google Scholar
11. Lemanov, V. V., Smirnova, E. P., Syrnicov, P. P., Tarakanov, E. A., Phys. Rev. B 54, 3151 (1996).Google Scholar
12. Bellingeri, E., Pellegrino, L., Marré, D., Pallecchi, I., Siri, A. S., J. Appl. Phys. 94, 5976 (2003).Google Scholar
13. Durán, A., Martinez, E., Díaz, J. A., Siqueiros, J. M., J. of Appl. Phys. 97, 104109 (20050).Google Scholar
15. Jauch, W., Palmer, A., phys. Rev. B 60, 2961 (1999).Google Scholar
16. Scott, J. F., Rev. Mod. Phys. 46 (1074) 83.Google Scholar
17. Axe, J. D., Harada, J., Shirane, G., Phys. Rev. B 1, 1227 (1970).Google Scholar