Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-04T00:10:36.684Z Has data issue: false hasContentIssue false

Thermal Boundary Resistance and Heat Diffusion in AlGaN/GaN HFETs

Published online by Cambridge University Press:  01 February 2011

Konstantin A. Filippov
Affiliation:
Nano-Device Laboratory Department of Electrical Engineering University of California - Riverside Riverside, California 92521
Alexander A. Balandin
Affiliation:
Nano-Device Laboratory Department of Electrical Engineering University of California - Riverside Riverside, California 92521
Get access

Abstract

We theoretically investigate the thermal boundary resistance and heat diffusion in AlGaN/GaN heterostructure field-effect transistors. Our calculations based on the diffuse mismatch model show that the thermal boundary resistance at the interface between GaN and SiC can strongly influence the temperature rise in the device channel.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Balandin, A., Morozov, S.V., Cai, S., Li, R., Wang, K.L., Wijeratne, G., Viswanathan, C.R., IEEE Trans on MTT, 47 (8) 1413 (1999).Google Scholar
2. Wu, Y., Keller, B.P., Keller, S., Xu, J.J., Thibeault, B.J., Denbaars, S.P., Mishra, U.K., IEICE Trans. Electron., E82-C (11), 1895 (1999).Google Scholar
3. Eastman, L.F., Tilak, V., Smart, J., Green, B.M., Chumbes, E.M., Dimitrov, R., Kim, H., Ambacher, O.S., Weimann, N., Prunty, T., Murphy, M., Schaff, W.J., Shealy, J.R., IEEE Trans. on Electron Devices, 48 (3), 479 (2001).Google Scholar
4. Gaska, R., Yang, J.W., Shur, M.S., IEEE Electron Device Letters, 19 (3), 89 (1998).Google Scholar
5. Kotchetkov, D., Zou, J., Balandin, A. A., Florescu, D. I., and Fred Pollak, H., Appl. Phys. Lett., 79, 4316 (2001).Google Scholar
6. Zou, J., Kotchetkov, D., Balandin, A. A., Florescu, D. I., Pollak, F.H., J. Appl. Phys., 92, 2534 (2002).Google Scholar
7. Daly, B. C., Maris, H. J., Nurmikko, A. V., Kuball, M., Han, J., J. Appl. Phys., 92, 3820 (2002).Google Scholar
8. Filippov, K.A., Balandin, A.A., In Proceed of Nanotech 2003 (ISBN 0-9728422-2-5), 3, 333 (2003).Google Scholar
9. Kim, E.K., Kwun, S.I., Lee, S.M., Seo, H., Yoon, J.G., Appl. Phys. Lett., 76 (26), 3864 (2000).Google Scholar
10. Goodson, K.E., Kading, O.W., Rosner, M., Zachai, R., Appl. Phys. Lett., 66 (23), 3134 (1995).Google Scholar
11. Hu, C., Kiene, M., Ho, P.S., Appl. Phys. Lett., 79 (25), 4121 (2001).Google Scholar
12. Swartz, E.T. and Pohl, R.O., Appl. Phys. Lett., 51 (26), 2200 (1987).Google Scholar
13. Properties of Advanced Semiconductor Materials (John Wiley & Sons, 2001) edited by Levinshtein, M.E., Rumyantsev, S.L., Shur, M.S..Google Scholar
14. Shur, M.S., private communications (2003).Google Scholar
15. Kuball, M., Hayes, J.M., Uren, M.J., Martin, T., Birbeck, J.C.H., Balmer, R.S., Hughes, B.T., IEEE Electron Device Letters, 23 (1), 7 (2002).Google Scholar