Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T07:11:57.997Z Has data issue: false hasContentIssue false

Thermal Stability of Ir-Silicide/SiGe Layers Grown in a Dual Electron Gun Chamber at Ultra-High Vacuum (Extended Abstract)

Published online by Cambridge University Press:  15 February 2011

C. K. Chung
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Taiwan, R. O. C.
J. Hwang
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Taiwan, R. O. C.
Get access

Abstract

Heteroepitaxial Ir-silicide/SiGe layers on the top of p-Si(100) have been achieved at a substrate temperature of 450 °C. The co-deposited Ir-silicide layer was determined to be Ir3Si4 with four types of epitaxial modes. Thermal stability of the film was examined by using Auger electron spectroscopy and X-ray diffractometer. The Ir3Si4/SiGe layers were stable as annealed at 550 °C for 20 sec in a rapid thermal annealing furnace, while interdiffusion between Ir3Si4 and SiGe occurs at a temperature of 750 deg;C or higher for 20 sec. The traditional guard-ring fabrication process should be performed before epitaxial films deposition due to this thermal instability.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tsaur, B. -Y., Weeks, M. M., and Pellegrini, P. W., IEEE Electron Device Letters EDL-9, 100 (1988).Google Scholar
2. Tsaur, B. -Y., Weeks, M. M., Trubiano, R., Pellegrini, P. W., and Yew, T.- R., IEEE Electron Device Letters EDL-9, 650 (1988).CrossRefGoogle Scholar
3. Tsaur, B. -Y., Mcnutt, M. J., Bredthauer, R. A., Mattson, R. B., IEEE Electron Device Letters EDL-10, 361 (1989).CrossRefGoogle Scholar
4. B. - Tsaur, Y., Chen, C. K., and Nechay, B. A., IEEE Electron Device Letters EDL-11, 415 (1990).Google Scholar
5. Kanaya, H., Hasegawa, F., Yamaka, E., Moriyama, T., and Nakajima, M., Jpn. J. Appl. Phys. 28, L544 (1989).Google Scholar
6. Kanaya, H., Fujii, K., Cho, Y., Kumagai, Y., Hasegawa, F., and Yamaka, E., Jpn. J. Appl. Phys. 29, L2143 (1990).Google Scholar
7. Chung, C. K., Hwang, J., Chang, Y. H., Chen, W. J., and Wang, L. P., J. Crystal Growth 126, 675 (1993).CrossRefGoogle Scholar
8. Ishizaka, A. and Shiraki, Y., J. Electrochem. Soc. 133, 666 (1986).Google Scholar
9. Petersson, S., Baglin, J., Hammer, W., d'Heurle, F., Kuan, T. S., Ohdomari, I., Pires, J. de Sousa, and Tove, P., J. Appl. Phys. 50, 3357 (1979).CrossRefGoogle Scholar
10. Ohdomari, I., Kuan, T. S., and Tu, K. N., J. Appl. Phys. 50, 7020 (1979).CrossRefGoogle Scholar
11. Engstrom, I., Lindsten, T., and Zdansky, E., Acta Chemica Scandinavica A 41, 237 (1987).Google Scholar