Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-01T08:12:38.345Z Has data issue: false hasContentIssue false

Thermocapillary Patterning of Nanoscale Polymer Films

Published online by Cambridge University Press:  31 January 2011

Mathias Dietzel
Affiliation:
mdietzel@caltech.edu, California Institute of Technology, Applied Physics, Pasadena, California, United States
Sandra M Troian
Affiliation:
stroian@caltech.edu, California Institute of Technology, Applied Physics, Pasadena, California, United States
Get access

Abstract

We investigate a method for non-contact patterning of molten polymer nanofilms based on thermocapillary modulation. Imposed thermal distributions along the surface of the film generate spatial gradients in surface tension. The resulting interfacial stresses are used to shape and mold nanofilms into 3D structures, which rapidly solidify when cooled to room temperature. Finite element simulations of the evolution of molten shapes illustrate how this technique can be used to fabricate features of different heights and separation distances in a single process step. These results provide useful guidelines for controlling proximity effects during evolution of adjacent structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Guo, L. J. Adv. Mat. 19, 495(2007).Google Scholar
2 Menard, E. et al. , Chem. Rev. 107, 1117(2007).Google Scholar
3 Miller, S. M. Troian, S. M. and Wagner, S. J. Vac. Sci. Tech. B 20, 2320(2002).Google Scholar
4 Miller, S. M. Troian, S. M. and Wagner, S. Appl. Phys. Lett. 83 (15), 3207 (2003)Google Scholar
5 Park, J. et al. , Nature Materials 6, 782(2007).Google Scholar
6 Dietzel, M. and Troian, S. M. submitted to Phys. Rev. Lett. – see also arXiv:physics.flu-dyn http://arxiv.org/abs/0903.4899 (2009).Google Scholar
7 Chou, S. Y. Zhuang, L. and Guo, L. J. Appl. Phys. Lett. 75, 1004(1999).Google Scholar
8 Schäffer, E. et al. , Europhys. Lett. 60, 255(2002).Google Scholar
9 Schäffer, E. et al. , Macromol. 36, 1645(2003).Google Scholar
10 Schäffer, E. et al. , Adv. Mat. 15, 514(2003).Google Scholar
11 Peng, J. et al. , Polymer 45, 8013(2004).Google Scholar
12 Leal, L.G. Fluid Mechanics and Convective Transport Processes (Cambridge Univ. Press, 2007). Google Scholar
13 COMSOL Multiphysics, V3.4, Comsol, Inc. (Los Angeles, CA, 2007).Google Scholar
14 Moreira, J. C. and Demarquette, N. R. J. Appl. Polym. Sci. 82, 1907(2001).Google Scholar
15 Masson, J. L. and Green, P. F. Phys. Rev. E 65, 31806(2002).Google Scholar
16 Lide, D. R. CRC Handbook of Chem. and Phys., 73rd ed. (CRC Publ. Co., Boca Raton, Fl., 1992).Google Scholar
17 Mark, J.E. Physical Properties of Polymers Handbook (AIP Press, Woodbury, NY, 1996).Google Scholar