Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T07:10:53.076Z Has data issue: false hasContentIssue false

Thermoelectric Properties of Mixed Rhenium Chalcogenides Re6Te15-x Sex (0 ≤ × ≤ 8)

Published online by Cambridge University Press:  10 February 2011

S. Kilibarda Dalafave
Affiliation:
The College of New Jersey, Dept. of Physics, Ewing, NJ 08628
J. Ziegler
Affiliation:
The College of New Jersey, Dept. of Physics, Ewing, NJ 08628
H. Mcallister
Affiliation:
The College of New Jersey, Dept. of Physics, Ewing, NJ 08628
Get access

Abstract

Reported are the temperature dependencies of the thermoelectric power and electrical resistivity of mixed rhenium chalcogenides Re6Te15-x,Sex (0 ≤ x ≤ 8) in the range 90–420 K. Influence of the partial chalcogen exchange on thermoelectric properties of these compounds is discussed. The samples are prepared by sintering elemental powders inside evacuated and sealed quartz ampoules at 1150 K for 170 hours. X-ray analysis reveals an orthorhombic lattice for samples with x < 8 and a tetragonal lattice for the Re6Te7Se8. sample. The lattice parameters and the unit cell volume decrease with increasing selenium concentration.

The measurements indicate p-type semiconducting behavior for all samples. The presence of the energy gap is observed at higher temperatures (T ≥ 180–220 K) for all x. Data suggest hopping conduction at lower temperatures. Room temperature resistivities increase non-linearly from 6.9 to 20.4 Ω m with the increasing selenium content. Initially, the thermoelectric power a increases with temperature for all samples, with the fastest increase in Re6Se8 Te7 and the slowest in Re6Te15. The temperature at which a reaches maximum decreases with the increasing Se content. Above this temperature, a decreases uniformly as the temperature increases, the slowest increase being for Re6Se8Te7 and the fastest for Re6Te15. Such α(T) dependence is also discussed. The temperature dependence of the power factor, α2/ρ, is presented. Comparison of ρ, α, and the power factor in Re6SexTe15-x with currently used state-of-the-art materials is given.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bronger, W. and Spangenberg, M., J. Less Common Met. 76, 73 (1980).CrossRefGoogle Scholar
2. Bronger, W. and Miessen, H. J., J. Less Common Met. 83, 29 (1982).CrossRefGoogle Scholar
3. Leduc, L., Perrin, A., and Sergent, M., Acta Cryst. C 39, 1503 (1983).CrossRefGoogle Scholar
4. Leduc, L., perrin, A, Sargent, M., Traon, F. Le, Pilet, J. C., and Traon, A. Le, Mat. Lett. 3, 209 (1985).CrossRefGoogle Scholar
5. Speziali, N. L., Berger, H., Leicht, G., Sanjines, R., Chapuis, G., and Levy, F., Mat. Res. Bull. 23, 1597 (1988).CrossRefGoogle Scholar
6. Slack, G. A., in “CRC Handbook of Thermoelectrics”, edited by Rowe, D. M. (CRC Press, Boca Raton, 1995) p. 407-440.Google Scholar
7. Opalovskii, A. A., Fedorov, V. E., Erenburg, B. G., Lobkov, E. V., Vasiliev, Y. V., Senchenko, L. N., Sikanovski, B. I., Russ. Physical Chem. 45, 2110 (1971).Google Scholar
8. Klaiber, F., Petter, W., and Hulliger, F., J. Solid State Chemistry 46, 112 (1983).CrossRefGoogle Scholar
9. Opalovskii, A. A., Fedorov, V. E., , B. G., Erenburg, B. G., Lobkov, E. V., Vasiliev, Y. V., Senchenko, L. N., Sikanovskii, B. I., Russ. Phys. Chem. 45, 1197 (1971).Google Scholar
10. Harbrecht, B. and Selmer, A., Z. anorg. allg. Chem. 620, 18611866 (1994).CrossRefGoogle Scholar
11. Johnston, W. D., Miller, R. C., and Damon, D. H., J. Less-Common Met. 8,272 (1965).CrossRefGoogle Scholar
12. Kilibarda-Dalafave, S. and Ziegler, J., accepted for publication in J. Mat. Sci. Let.Google Scholar
13. Bullett, D. W., Sol. Stat. Com. 51 (1), 51 (1984).CrossRefGoogle Scholar
14. Bdttger, H. and Bryksin, V. V., Phys. Stat. Sol. (b) 78, (1976) 9; 78, 415 (1976).CrossRefGoogle Scholar
15. Bronger, W., Miessen, H.-j., Neugroeschel, R., Schmitz, D. and Spangenberg, M., Z. anorg. allg. Chem. 525, 41 (1985).CrossRefGoogle Scholar