Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T04:14:27.319Z Has data issue: false hasContentIssue false

Thermoelectric Properties of ZnO Thin Films Grown by Metal-Organic Chemical Vapor Deposition

Published online by Cambridge University Press:  10 July 2015

Bahadir Kucukgok
Affiliation:
Department of Electrical and Computer Engineering, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, U.S.A
Babar Hussain
Affiliation:
Department of Electrical and Computer Engineering, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, U.S.A
Chuanle Zhou
Affiliation:
Department of Electrical and Computer Engineering, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, U.S.A
Ian T. Ferguson
Affiliation:
College of Engineering and Computing, Missouri University of Science and Technology, 305 McNutt Hall, 1400 N. Bishop, Rolla, MO 65409, U.S.A
Na Lu
Affiliation:
Department of Engineering Technology, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, U.S.A
Get access

Abstract

Thermoelectric (TE) materials have gained renewed interests in last decades for both power generation and energy conservation from waste-heat harvesting. Research in the discovery of best TE materials such as, bulk materials, complex structures, and low dimensional play crucial role to achieve high efficiency TE materials. Wide bandgap materials like ZnO can be promising candidate for high efficiency TE power generation owing to its low-cost, nontoxicity, and stability at high temperatures. In this paper, room temperature TE properties of thin film ZnO grown by metal organic vapor deposition (MOCVD) are reported. TE properties of thin film GaN are also studied as reference to that of thin film ZnO. Moreover, high resolution x-ray diffraction (HRXRD), room temperature photoluminescence (PL) with deep ultraviolet (DUV) spectroscopy (excitation at 248nm), hall effect, and thermal gradient methods have been employed to investigate the effect of structural, optical, electrical, and thermal properties of the samples, respectively. The effect of doping concentrations and structural defects on Seebeck coefficients of thin film ZnO are systematically studied and discussed in this work.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lu, N. and Ferguson, I., Semicond. Sci. Technol. 28, 074023 (2013).CrossRefGoogle Scholar
Saeed, Y., Singh, N., and Schwingenschlogl, U., Appl. Phys. Lett. 104, 033105 (2014).CrossRefGoogle Scholar
Gaultois, M. W., and Sparks, T. D., Appl. Phys. Lett. 104, 113906 (2014).CrossRefGoogle Scholar
Wang, B., Kucukgok, B., Hea, Q., Melton, A. G., Leacha, J., Udwarya, K., Evans, K., Lu, N. and Ferguson, I. T., MRS Online Proceedings Library, 1558 (2013).Google Scholar
Zhu, H., Sun, W., Armiento, R., Lazic, P., and Ceder, G., Appl. Phys. Lett. 104, 082107 (2014).CrossRefGoogle Scholar
Elsheikh, M. H., Shnawah, D. A., Sabri, M. F. M., Said, S. B. M., Hassan, M. H., Bashir, M. B. A., Mohamad, M., Renewable and Sustainable Energy Reviews 30, 337355 (2014).CrossRefGoogle Scholar
Jood, P., Mehta, R. J., Zhang, Y., Borca-Tasciuc, T., Dou, S. X., Singh, D. J. and Ramanath, G., RSC Adv. 4, 6363 (2014).CrossRefGoogle Scholar
Gautam, D., Engenhorst, M., Schilling, C., Schierning, G., Schmechel, R., and Winterer, M., J. Mater. Chem. A, 3, 189197 (2015).CrossRefGoogle Scholar
Kucukgok, B., Wang, B., Melton, A. G., Lu, N., and Ferguson, I. T., Phys. Status Solidi C, 11, 894897 (2014).CrossRefGoogle Scholar
Brockway, L., Vasiraju, V., Sunkara, M. K., and Vaddiraju, S., ACS Appl. Mater. Interfaces, 6, 1492314930 (2014).CrossRefGoogle Scholar
Saini, S., Mele, P., Honda, H., Henry, D. J., Hopkins, P. E., Molina-Luna, L., Matsumoto, K., Miyazaki, K., and Ichinose, A., Jpn. J. Appl. Phys. 53, 060306 (2014).CrossRefGoogle Scholar
Alama, H., Ramakrishna, S., Nano Energy, 2, 190212 (2013).CrossRefGoogle Scholar
Fan, J. C., Sreekanth, K. M.. Xie, Z., Chang, SL., Rao, K.V., Progress in Materials Science, 58, 874985 (2013).CrossRefGoogle Scholar
Kikuchi, A., Okinaka, N., Akiyama, T., Scr. Mater. 63, 407410 (2010).CrossRefGoogle Scholar
Nong, N. V., Pryds, N., Linderoth, S., Ohtaki, M., Adv. Mater. 23, 24842490 (2011).CrossRefGoogle Scholar
Ito, M., Furumoto, D., J. Alloys Compd. 450, 517520 (2008).CrossRefGoogle Scholar
Takayanagi, R., Fujii, T., and Asamitsu, A., Jpn. J. Appl. Phys. 53, 111101 (2014).CrossRefGoogle Scholar
Makino, T., Segawa, Y., Tsukazaki, A., Ohtomo, A., and Kawasaki, M., Appl. Phys. Lett. 87 (2005).CrossRefGoogle Scholar
Tsukazaki, A., Ohtomo, A., and Kawasaki, M., Appl. Phys. Lett. 88 (2006).CrossRefGoogle Scholar
Fischetti, M. V., Phys Rev B. 44, 5527 (1991).CrossRefGoogle Scholar