Published online by Cambridge University Press: 01 February 2011
Thick low defect AlN and AlGaN layers grown on ultra violet (UV) transparent substrates are considered as promising substrate materials for the UV light emitters and detectors. Electrically insulating thick AlN layers may serve as the substrates for AlGaN/GaN-based high power high electron mobility transistors (HEMTs). In this paper we report on crack-free up to 20 μm thick AlN layers grown by stress control HVPE on 2-inch sapphire substrates. As-grown surface had a characteristic pyramidal morphology. Being thick enough, AlN layers can be polished to improve surface roughness. The minimum full width at half maximum (FWHM) values of AlN ω-scan x-ray (00.2) and (10.2) rocking curves was about 500 and 1000 arcsec, respectively. The XRD analysis was applied for the threading dislocation density evaluation in grown AlN layer. Screw dislocation density was found to be (3-7)×108 cm-2 for the layers from 3 to 12 μm thick.