Article contents
Transient and modulated photoconductivity in microcrystalline silicon
Published online by Cambridge University Press: 21 March 2011
Abstract
We report on transient and modulated photoconductivity experiments with undoped michrystalline silicon in which access to density-of-states information is limited because the Fermi level results in occupancy of localised states in the energy range which is scanned. Simulation results show that a defect peak will be masked if most of the distribution is occupied because of the Fermi level position and the density-of-states determined from the experimental data is not an image of the true distribution. Another difficulty with obtaining reliable density-of-states distributions in microcrystalline silicon is the metastability of samples with respect ot adsorption of gases. If dark-conductivity changes are large upon heat treatment in vacuum, the modulated and transient photocurrent response are also affected to a large degree and the density-of-states profiles apart form being influenced by the Fermi level position thus also depend on the thermal history of the sample.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2004
References
REFERENCES
- 1
- Cited by