Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-04T05:44:38.087Z Has data issue: false hasContentIssue false

Transient Behavior of the Polarization in Ferroelectric Thin Film Capacitors

Published online by Cambridge University Press:  21 March 2011

Oliver Lohse
Affiliation:
IWE II, RWTH University of Technology, 52056 Aachen, Germany
Michael Grossmann
Affiliation:
IWE II, RWTH University of Technology, 52056 Aachen, Germany
Dierk Bolten
Affiliation:
IWE II, RWTH University of Technology, 52056 Aachen, Germany
Ulrich Boettger
Affiliation:
IWE II, RWTH University of Technology, 52056 Aachen, Germany
Rainer Waser
Affiliation:
FZJ Research Center Juelich, 52425 Juelich, Germany
Get access

Abstract

The understanding of the polarization switching process of ferroelectric capacitors is highly relevant for the development and optimization of FeRAM devices. We report on the characterization of Pb(Zr,Ti)O3 thin films which have been studied by means of dedicated rectangle pulse measurements. Decreasing the voltage level of the excitation pulses decelerates the polarization switching significantly to the range of milliseconds and reduces the switchable polarization. In this work the influence of niobium (Nb) doping on the switching properties of PZT thin films prepared by CSD are investigated to reach the aspired conditions of low voltage operation, read and write access pulses in the range of nanoseconds. For the implementation of the transient behavior of ferroelectric capacitors in circuit design and simulation tools it is necessary to develop a model which precisely describes the polarization hysteresis, the pulse switching behavior as well as the small signal capacitance. The fundamental considerations for this model are presented, based on an ideal ferroelectric capacitor, taking into account the Curie-von Schweidler behavior. The latter is observed in non-ferroelectric high-K materials as well as in ferroelectric thin films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Eaton, S. S., Butler, D. B., Parris, M., Wilson, D., and McNeillie, H., IEEE ISSCC. Dig. of Tech. Pap. 130 (1988).Google Scholar
2. Araujo, C. A. Paz de, Cuchiaro, J. D., McMillan, L. D., Scott, M. C., and Scott, J. F., Nature 374, 627 (1995).10.1038/374627a0Google Scholar
3. Scott, J. F. and Araujo, C. A. Paz de, Science 246, 1400 (1989).10.1126/science.246.4936.1400Google Scholar
4. Baniecki, J. D., Laibowitz, R. B., Shaw, T. M., Duncombe, P. R., Neumayer, D. A., Kotecki, D. E., Shen, H., and Ma, Q. Y., Appl. Phys. Lett. 72, 498 (1998).10.1063/1.120796Google Scholar
5. Larsen, P. K., Kampschoer, G. L. M., Ulenaers, M. J. E., Spierings, G. A. C. M., and Cuppens, R., Appl. Phys. Lett. 59, 611 (1991).10.1063/1.105402Google Scholar
6. Larsen, P. K., Cuppens, R., and Dormans, G. J. M., Science and Technology of Electroceramic Thin Films, 284, Applied Sciences, edited by Auciello, O. and Waser, R. (Kluwer Academic, Netherlands, 1995), pp. 201221.10.1007/978-94-017-2950-5_15Google Scholar
7. Merz, W. J., Phys. Rev. 95, 690 (1954).10.1103/PhysRev.95.690Google Scholar
8. Pulvari, C. F. and Kuebler, W., J. Appl. Phys. 29, 1742 (1958).10.1063/1.1723037Google Scholar
9. Kolmogorov, A. N., Izv. Acad. Nauk USSR, Ser. Math. 6, 355 (1937).Google Scholar
10. Avrami, M., J. Chem. Phys. 7, 1103 (1939), J. Chem. Phys. 8, 212 (1940), J. Chem. Phys. 9, 17 (1941).10.1063/1.1750380Google Scholar
11. Orihara, H., Hashimoto, S., and Ishibashi, Y., J. Phys. Soc. Jpn 63, 1031 (1994).10.1143/JPSJ.63.1031Google Scholar
12. Hashimoto, S., Orihara, H., and Ishibashi, Y., J. Phys. Soc. Jpn 63, 1601 (1994).10.1143/JPSJ.63.1601Google Scholar
13. Ishibashi, Y. and Orihara, H., Int. Ferroelectrics 9, 57 (1995).10.1080/10584589508012906Google Scholar
14. Shur, V., Rumyantsev, E., and Makarov, S., J. Appl. Phys. 84, 445 (1998).10.1063/1.368047Google Scholar
15.SPICE3 Version 3f4, Dep. Elec. Eng. Comp. Sci., Berkeley, Univ. California.Google Scholar
16.XSPICE, Comp. Sci. Inf. Tech. Lab., Georgia Inst. Tech., Atlanta, Georgia.Google Scholar
17. Miller, R.C. and Savage, A., Phys. Rev. 115, p.1176 (1959).10.1103/PhysRev.115.1176Google Scholar
18. Xu, Y., Ferroelectric Materials and Their Applications, North Holland, p.130 (1990).Google Scholar
19. Budd, K., Dey, S., and Payne, D., Br. Ceram. Proc. 36, p.107 (1985).Google Scholar
20. Traynor, S.D., Hadnagy, T.D., and Kammerdiner, L., Int. Ferroelectrics 16, pp63 (1997).10.1080/10584589708013030Google Scholar
21. Lohse, O., Tiedke, S., Grossmann, M., and Waser, R., Int. Ferroelectrics 22, pp.123 (1998).10.1080/10584589808208035Google Scholar
22. Shimada, Y., Azuma, M., Nakao, K., Chaya, S., Moriwaki, N., and Otsuki, T., Jpn. J. Appl. Phys. 36, pp.5912 (1997).Google Scholar
23. Lohse, O., Grossmann, M., Boettger, U., Bolten, D., and Waser, R., J. Appl. Phys, 89, accepted for publication (2001).10.1063/1.1331341Google Scholar
24. Fatuzzo, E. and Merz, W. J., Ferroelectricity, Selected Topics in Solid State Physics (North-Holland, Amsterdam, 1967).Google Scholar
25. Chen, X., Kingon, A. I., Mantese, L., Auciello, O., and Hsieh, K. Y., Int. Ferroelectrics 3, 355 (1993).10.1080/10584589308216691Google Scholar
26. Tagantsev, A. K., Kholkin, A. L., Brooks, E. L., and Setter, N., Int. Ferroelectrics 10, 189 (1995).10.1080/10584589508012276Google Scholar
27. Schumacher, M., Manetta, S., and Waser, R., J. de Physique IV 8, 117 (1998).Google Scholar
28. Mott, N. F. and Davis, E. A., Electronic Processes in Non-Cystalline Materials, Monographs on Physics (Clarendon Press, Oxford, 1971).Google Scholar