Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T06:33:48.335Z Has data issue: false hasContentIssue false

Understanding Structure and Electronic Properties of Extended Self-Interstitial Defects in Silicon

Published online by Cambridge University Press:  10 February 2011

P. Alippi
Affiliation:
INFM and Dept. Materials Science, via Cozzi 53, 1-20126 Milano, Italy, paola.alippi@mater.unimi.itluciano.colombo@mater.unimi.it
L. Colombo
Affiliation:
INFM and Dept. Materials Science, via Cozzi 53, 1-20126 Milano, Italy, paola.alippi@mater.unimi.itluciano.colombo@mater.unimi.it
Get access

Abstract

The results of an atomistic investigation on the coalescence mechanisms of self-interstitial {311} defects are presented. Formation energies and equilibrium configurations of defect structures are determined by tight-binding molecular dynamics simulation. We focus on the characterization of the lattice strain field around the defect complex: By means of the determination of the atomic stress distribution, we discuss how it may influence the formation mechanisms of the planar {311} structures. We also attempt a correlation between structural features and electronic properties through the analysis of defect-related orbitals occupations and inverse participation ratios.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Eaglesham, D. J., Stolk, P. A., Gossmann, H.-J., and Poate, J. M., Appl. Phys. Lett. 65, 2305 (1994); A. Agarwal, T. E. Haynes, D. J. Eaglesham, H.-J. Gossmann, D. C: Jacobson, J. M. Poate, and Y. E. Erokhin, ibid. 70, 3332 (1997).Google Scholar
[2] Salisbury, I. G. and Loretto, M. H., Philos. Mag. A 39, 317 (1979); T. Y. Tan, Philos. Mag. A 44, 101 (1981).Google Scholar
[3] Takeda, Seiji, Jpn. J. Appl. Phys. 30, L639 (1991).Google Scholar
[4] Parisini, A. and Bourret, A., Philos. Mag. A 67, 605 (1993).Google Scholar
[5] Fedina, L., Gutakovskii, A., Aseev, A., Landuyt, J. Van, Vanhellemont, J., in “In-situ microscopy in material research”, edited by Gai, Pratibha L. (Kluwer Academic Publishers, USA, 1997), p.6392.Google Scholar
[6] Kohyama, M., Takeda, S., Phys. Rev. B 46, 12305 (1992).Google Scholar
[7] Kim, J., Wilkins, J. W., Khan, F. S., Canning, A., Phys. Rev. B 55 16186, 1997.Google Scholar
[8] Kohyama, M., Takeda, S., Phys. Rev. B 51, 13111 (1995).Google Scholar
[9] Colombo, L., in “Annual Reviews of Computational Physics”, edited by Stauffer, D. (World Scientific, Singapore, 1996), Vol. IV, p.147.Google Scholar
[10] Kwon, I., Biswas, R., Wang, C. Z., Ho, K. M., and Soukoulis, C. M., Phys. Rev. B 49, 7242 (1994).Google Scholar
[11] Goedecker, S. and Colombo, L., Phys. Rev. Lett. 73, 122 (1994).Google Scholar
[12] Stillinger, F.H. and Weber, T.A., Phys. Rev. B 31, 5262 (1985)Google Scholar
[13] Marks, N. A., McKenzie, D. R., and Pailthorpe, B. A. Phys. Rev. B 53, 4117 (1996).Google Scholar
[14] Dong, Jianjun and Drabold, D. A., Phys. Rev. Lett. 80, 1928 (1998).Google Scholar