No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
Stem cell transplantation holds tremendous potential for the treatment of various trauma and diseases. However, the therapeutic efficacy is often limited by poor and unpredictable post-transplantation cell survival. While hydrogels are thought to be ideal scaffolds, the sol-gel phase transitions required for cell encapsulation within commercially available biomatrices such as collagen and Matrigel often rely on non-physiological environmental triggers (e.g., pH and temperature shifts), which are detrimental to cells. To address this limitation, we have designed a novel class of protein biomaterials: Mixing-Induced Two-Component Hydrogels (MITCH) that are recombinantly engineered to undergo gelation by hetero-assembly upon mixing at constant physiological conditions, thereby enabling simple, biocompatible cell encapsulation and transplantation protocols. Building upon bio-mimicry and precise molecular-level design principles, the resulting hydrogels have tunable viscoelasticity consistent with simple polymer physics considerations. MITCH are reproducible across cell-culture systems, supporting growth of human endothelial cells, rat mesenchymal stem cells, rat neural stem cells, and human adipose-derived stem cells. Additionally, MITCH promote the differentiation of neural progenitors into neuronal phenotypes, which adopt a 3D-branched morphology within the hydrogels.