Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-04T05:42:26.539Z Has data issue: false hasContentIssue false

Vacancies in Homoepitaxially-Grown Ag and Cu films

Published online by Cambridge University Press:  21 March 2011

Cristian E. Botez
Affiliation:
Department of Physics, State University of New York, Stony Brook, NY 11794, U.S.A
William C. Elliott
Affiliation:
Department of Physics, State University of New York, Stony Brook, NY 11794, U.S.A
Paul F. Miceli
Affiliation:
Department of Physics, State University of New York, Stony Brook, NY 11794, U.S.A
Peter W. Stephens
Affiliation:
Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO 65211, U.S.A
Get access

Abstract

X-ray scattering experiments on the homoepitaxial growth of Ag(001) Ag(111) and Cu(001) show that high vacancy concentrations can be achieved during low temperature deposition. It is observed that the vacancies, which can attain concentrations on the order of 2%, extend throughout the thickness of the deposited film. Moreover, vacancies are found to have a profound effect on the evolving morphology of certain surfaces, which is discussed in terms of prior studies of kinetic roughening in these systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Amar, J.G. and Family, F., Phys. Rev. B 54, 14742(1996); M.C. Bartelt and J.W. Evans, Phys. Rev. Lett. 75, 4250(1995); P. Smilauer, M.R. Wilby and D.D. Vvedensky; Phys. Rev. B 47, 4119(1993); M. Siegert and M. Plischke, Phys. Rev. Lett. 73, 1517(1994).Google Scholar
2. Ernst, H.-J., Fabre, F., Fokerts, R. and Lapujoulade, J., Phys. Rev. Lett. 72, 112(1994); L.C. Jorritsma, M. Bijnagte, G. Rosenfeld, B. Poelsema, Phys. Rev. Lett. 78, 911(1997); J.-K. Zou, J.F. Wendelken, H. Durr and C.-L. Liu, Phys. Rev. Lett. 72, 3064(1994).Google Scholar
3. Caspersen, K.J., Stoldt, C.R., Layson, A.R., Bartelt, M.C., Thiel, P.A. and Evans, J.W., Phys. Rev. B 63, 085401(2001).Google Scholar
4. Botez, C.E., Miceli, P.F. and Stephens, P.W., (unpublished).Google Scholar
5. Elliott, W.C., Miceli, P.F., Tse, T. and Stephens, P.W., Phys. Rev. B 54, 17938(1996).Google Scholar
6. Robinson, I.K and Tweet, D.J., Rep. Prog. Phys. 55, 559(1992).Google Scholar
7. Elliott, W.C., Miceli, P.F., Tse, T. and Stephens, P.W., Physica B 221, 65(1996).Google Scholar
8. Botez, C.E., Elliott, W.C., Miceli, P.F. and Stephens, P.W., (unpublished).Google Scholar
9. Landau, L.D. and Lifshitz, E.M., Theory of Elasticity (Pergamon Press, 1970) p. 14.Google Scholar
10. Eshelby, E. J., J. Appl. Phys. 25, 255(1954)Google Scholar
11. Klechner, C.L. and DePristo, A.E., Surf. Sci. 286, 275(1997).Google Scholar
12. Stoldt, C.R., Caspersen, K.J., Bartelt, M.C., Jenks, C. J, Evans, J.W. and Thiel, P.A., Phys. Rev. Lett. 85, 800(2000).Google Scholar
13. Elliott, W.C., Miceli, P.F., Tse, T. and Stephens, P.W., in Surface Difussion: Atomistic and Collective Processes, vol. 360 of NATO ASI Series B: Physics, edited by Tringides, M. C., (Plenum Press, New York, 1997) p. 209.Google Scholar