Published online by Cambridge University Press: 01 February 2011
Report presents results of research aimed the investigation of possibility to use such chalcogenide materials as vitreous As2S3, As2Se3 and their solid solutions for gas sensors applications. For a long time these materials were well-known as materials mostly used for optical information registration. Developed approach allows to widening the sphere of application of given materials and create new class of gas sensitive devices.
Thin film gas sensitive elements on the base of solid solutions of (As2S3)x-(As2Se3)1−x (where x=0; 0.3; 0.5; 0.7 and 1.0) were obtained by means of the thermal evaporation under vacuum conditions 10−5 Torr. Thin films can be deposited on both hard and flexible substrate. Formed films had specific resistance on the level 1010–1014 Ohm.cm (on dependence on composition) at the thickness of 1–2 μm.
It was established that CGS thin films possess gas sensitivity S, determined as S=(Ggas-Gait)/Gair, on the level 2–3 relative units for CO and 7–8 for hydrogen at the 100 ppm concentration levels of both gases in atmosphere already at the room temperature that allows to excluding the heater from the gas sensor construction decreasing through that both manufacturing and operational cost.
It is concluded that chalcogenide semiconductor materials can be considered as perspective materials for gas sensor application, including space exploration application.