Published online by Cambridge University Press: 10 February 2011
Exposing wide-bandgap ionic materials to UV and IR photons can produce ion emissions with kinetic energies of several eV, well in excess of the photon energy. Electron emissions are also observed. This implies that these materials possess occupied electronic defect states within the band gap. We have investigated the consequences of a variety of defect-generating stimuli (electron irradiation, laser irradiation, mechanical treatments, and heating) on electron and ion emission from inorganic ionic crystals. These stimuli generate defects that strongly interact with the probe laser on a wide variety of ionic crystals, and dramatically decrease the probe laser intensities required for ion and neutral emissions, laser damage, and plume formation.