Published online by Cambridge University Press: 22 February 2011
InSb thin films on oxidized Si wafers have been recrystallized using a strip heater to generate and scan a narrow molten zone across the film. Grains up to 3 × 10 mm have been produced. Crystallization proceeds in a faceted cellular fashion, the excess solute (Sb) being rejected into subboundaries which often lie along low-index crystallographic directions. A InSb-Sb eutectic structure forms at the subboundaries. The width of the single-crystal InSb between subboundaries is approximately 75 μm. The techniques of planar constriction and subboundary entrainment have been extended to InSb for the selection of single grains and the orelocation of subboundaries. This technology of producing InSb thin films on oxidized Si substrates max, be extendable to other III-V materials, and could lead to novel device structures through the integration of Si and III-V compound devices on the same substrate.