Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-11T07:46:23.036Z Has data issue: false hasContentIssue false

AN ALGEBRO-GEOMETRIC STUDY OF SPECIAL VALUES OF HYPERGEOMETRIC FUNCTIONS $_{3}F_{2}$

Published online by Cambridge University Press:  13 September 2018

MASANORI ASAKURA
Affiliation:
Department of Mathematics, Hokkaido University, Sapporo, 060-0810, Japan email asakura@math.sci.hokudai.ac.jp
NORIYUKI OTSUBO
Affiliation:
Department of Mathematics and Informatics, Chiba University, Chiba, 263-8522, Japan email otsubo@math.s.chiba-u.ac.jp
TOMOHIDE TERASOMA
Affiliation:
Graduate School of Mathematical Sciences, The University of Tokyo, Tokyo, 153-8914, Japan email terasoma@ms.u-tokyo.ac.jp

Abstract

For a certain class of hypergeometric functions $_{3}F_{2}$ with rational parameters, we give a sufficient condition for the special value at $1$ to be expressed in terms of logarithms of algebraic numbers. We give two proofs, both of which are algebro-geometric and related to higher regulators.

Type
Article
Copyright
© 2018 Foundation Nagoya Mathematical Journal  

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This work is supported by JSPS Grant-in-Aid for Scientific Research: 15K04769, 25400007 and 15H02048.

References

Aoki, N., On some arithmetic problems related to the Hodge cycles on the Fermat varieties , Math. Ann. 266 (1983), 2354.10.1007/BF01458703Google Scholar
Asakura, M. and Fresán, J., The Period conjecture of Gross-Deligne for fibrations, preprint.Google Scholar
Asakura, M. and Otsubo, N., CM periods, CM regulators and hypergeometric functions, I , Canad. J. Math. 70 (2018), 481514.10.4153/CJM-2017-008-6Google Scholar
Asakura, M. and Otsubo, N., CM periods, CM regulators and hypergeometric functions, II , Math. Z. 289 (2018), 13251355.10.1007/s00209-017-2001-1Google Scholar
Bailey, W. N., Generalized Hypergeometric Series, Cambridge Tracts in Mathematics and Mathematical Physics 32 , Stechert–Hafner, Inc., New York, 1964.Google Scholar
Deligne, P., “ Valeurs de fonctions L et périodes d’intégrales ”, in Automorphic Forms, Representations and L-Functions, Part 2, Proceedings of Symposia in Pure Mathematics 33 , American Mathematical Society, Providence, RI, 1979, 313346.10.1090/pspum/033.2/546622Google Scholar
Erdélyi, A. et al. (eds), Higher Transcendental Functions, Vol. 1, California Inst. Tech., 1981.Google Scholar
Shioda, T., On the Picard number of a Fermat surface , J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28(3) (1981), 725734.Google Scholar
Slater, L. J., Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, 1966.Google Scholar
Terasoma, T., Period integrals of open Fermat surfaces and special values of hypergeometric functions, preprint, 2018, arXiv:1801.01251.Google Scholar
Watson, G. N., The integral formula for generalized Legendre functions , Proc. Lond. Math. Soc. (2) 17 (1918), 241246.10.1112/plms/s2-17.1.241Google Scholar
Yabu, T., Explicit values of $_{3}F_{2}$ at $x=1$ via the logarithmic functions (in Japanese), Master’s thesis, Hokkaido University, March 2017.Google Scholar