Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T07:12:27.515Z Has data issue: false hasContentIssue false

Most of the Maps near the Exponential are Hyperbolic

Published online by Cambridge University Press:  11 January 2016

Xiumei Wang
Affiliation:
Department of Computer Science and Information Technology, JiangSu Teachers University of Technology, Changzhou, 213001, P. R. China, wxmei@jstu.edu.cn
Gaofei Zhang
Affiliation:
Department of Mathematics, Nanjing University, Nanjing, 210093, P. R. China, zhanggf@hotmail.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let fλ(z) = λez. In this short note, we consider those maps fλ with λ close to 1. We show that the probability that fλ is hyperbolic approaches 1 as λ → 1.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2008

References

[1] Baker, I. N. and Rippon, P. J., Iteration of exponential functions, Ann. Acad. Sci. Fenn., 9 (1984), 4977.CrossRefGoogle Scholar
[2] Devaney, R., Julia sets and bifurcation diagrams for exponential maps, Bull. Amer. Math. Soc., 11 (1984), 167171.CrossRefGoogle Scholar
[3] Devaney, R., Structure Stability of exp(z), Proc. Amer. Math. Soc., 94 (1985), no. 3, 545548.Google Scholar
[4] Devaney, R., Goldberg, L., and Hubbard, J., A dynamical approximation to the exponential map by polynomials, Prepint M.S.R.I. (1985).Google Scholar
[5] Devaney, R., Fagella, N. and Jarque, X., Hyperbolic components of the complex exponential family, Fund. Math., 174 (2002), no. 3, 193215.CrossRefGoogle Scholar
[6] Devaney, R. and Krych, M., Dynamics of exp(z), Ergodic Theory & Dynamical System (1984), 3552.CrossRefGoogle Scholar
[7] Douady, A. and Goldberg, L., The nonconjugacy of certain exponential functions, M.S.R.I. publ. 10, Springer-Verlag, New York, 1988.Google Scholar
[8] Ghys, E., Goldberg, L., and Sullivan, D., On the Measurable Dynamics of z → ez , Ergodic Theory & Dynamical System, 5 (1985), 329335.CrossRefGoogle Scholar
[9] Lyubich, M., Measurable Dynamics of the Exponential, Siberian J. Math., 28 (1987), 111127.Google Scholar
[10] Misiurewicz, M., On iterates of ez , Ergodic Theory & Dynamical System, 1 (1981), 103106.CrossRefGoogle Scholar
[11] McMullen, C., Area and Hausdorff dimension of Julia sets of entire functions, Trans. Amer. Math. Soc., 300 (1987), no. 1, 329342.CrossRefGoogle Scholar
[12] Qiu, W., Hausdorff dimension of the M-set of λ exp(z), Acta Math. Sinica (N.S.), 10 (1994), no. 4, 362368.Google Scholar
[13] Rees, M., The Exponential Map is not Recurrent, Math. Z., 191 (1986), 593598.CrossRefGoogle Scholar
[14] Rees, M., Positive Measure Sets of Ergodic Rational Maps, Ann. Scient. éc. Norm. Sup., 4 série, t. 19, 1986, pp. 383407.Google Scholar
[15] Schleicher, D., Attracting Dynamics of Exponential Maps, Ann. Acad. Sci. Fenn. Math., 28 (2003), 334.Google Scholar
[16] Ye, Z., Structural instability of exponential functions, Trans. Amer. Math. Soc., 344 (1994), no. 1, 379389.CrossRefGoogle Scholar
[17] Zhou, J. and Li, Z., Structural instability of mapping z → λ exp(z) (λ > e−1), Sci. China. Ser. A, 301 (1989), 11531161.Google Scholar