Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T05:56:33.063Z Has data issue: false hasContentIssue false

Paleogeographic evolution and avulsion history of the Holocene Rhine-Meuse delta, The Netherlands

Published online by Cambridge University Press:  01 April 2016

H.J.A. Berendsen*
Affiliation:
The Netherlands Centre for Geo-Ecological Research (ICG) Department of Physical Geography, Faculty of Geographical Sciences Utrecht University, PO Box 80.115, 3508 TC Utrecht, The Netherlands; e-mail:H.Berendsen@geog.uu.nl
E. Stouthamer
Affiliation:
The Netherlands Centre for Geo-Ecological Research (ICG) Department of Physical Geography, Faculty of Geographical Sciences Utrecht University, PO Box 80.115, 3508 TC Utrecht, The Netherlands; e-mail:H.Berendsen@geog.uu.nl
*
*Corresponding author

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Approximately 200,000 lithological borehole descriptions, 1200 14C dates, 36,000 dated archaeological artifacts, and gradients of palaeochannels were used to reconstruct the Holocene evolution of the fluvial part of the Rhine-Meuse delta. Ages of all Holocene channel belts were stored in a Geographical Information System database that enables generation of palaeogeographic maps for any time during the Holocene. The time resolution of the palaeogeographic reconstruction is about 200 years.

During the Holocene, avulsion was an important process, resulting in frequent shifts of areas of clastic sedimentation. Palaeogeographic evolution and avulsion history of the Rhine-Meuse delta are governed by complex interactions among several factors. These are: (1) Location and shape of the Late Weichselian palaeovalley. In the Early Holocene, rivers were confined to the LateWeichselian valley. When aggradation shifted upstream, the margins of the valley were crossed by newly formed channel belts. (2) Sealevel rise, which resulted in back-filling of the palaeovalley. (3) River channel pattern. In the central-western part of the delta, a straight anastomosed channel pattern with large-scale crevassing developed as a result of sealevel rise and the associated decrease of stream power. (4) Neotectonics. Differential tectonic movements of the Peel Horst and Roer Valley Graben seem to have influenced river behaviour (formation of an asymmetrical meander belt, location of avulsion nodes in fault zones), especially from 4500–2800 14C yr BP when the rate of sealevel rise had decreased. After 2800 14C yr BP sealevel rise further decreased, and tectonic influence still may have influenced avulsions, but from then on other factors became dominant. (5) Increased discharge, sediment load and/or within-channel sedimentation. After 2800 14C yr BP, meander wavelenghts increased, which is interpreted as a result of increased bankfull discharge and/or within channel sedimentation. After 2000 14C yr BP both discharge and sediment load increased as a result of human influence. (6) Coastal configuration. The limited number of tidal inlets and extensive peat formation restricted the number of avulsions in the western part of the delta, and enhanced channel reoccupation. (7) Composition of the substrate and river banks. Meandering river channels tended to adhere to the sandy margins of the LateWeichselian palaeovalley, and high channel sinuosity is found in areas where river banks consisted of sand. Peat formation, which was most extensive in the western part of the back-barrier area especially between 4000 and 3000 14C yr BP, more or less fixed the river pattern at that time, hampering avulsions. (8) Marine ingressions, e.g. the 1421 AD St. Elizabeth’s flood caused large-scale erosion in the southwestern part of the fluvial deltaic plain, resulting in a shift of the main drainage to the SW. (9) Human influence. Since about 1100 AD human influence dominated the palaeogeographic evolution. Rivers were embanked and natural avulsions did no longer occur.

Type
Special section: PAGES Symposium, Amsterdam, 3 November 2000
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2002

References

Allen, J.R.L., 1965. A review of the origin and characteristics of recent alluvial sediments. Sedimentology 5: 89–191.CrossRefGoogle Scholar
Asselman, N.E.M., 1997. Suspended sediment in the River Rhine. The impact of climate change on erosion, transport and deposition. Ph.D. thesis Utrecht University, KNAG/Faculteit Ruimtelijke Wetenschappen Universiteit Utrecht: Netherlands Geographical Studies 234: Utrecht University, KNAG/Faculteit Ruimtelijke Wetenschappen Universiteit Utrecht: Netherlands Geographical Studies 234:257 pp.Google Scholar
Beets, D.J., Van der Valk, L. and Stive, M.F.J., 1992. Holocene evolution of the coast of Holland. Marine Geology 103: 423–443.CrossRefGoogle Scholar
Berendsen, H.J.A., 1982. De genese van het landschap in het zuiden van de provincie Utrecht, een fysisch-geografische studie. Ph.D. thesis (with summary in English), Utrechtse Geografische Studies 10:256 pp.Google Scholar
Berendsen, H.J.A. (Ed.), 1986. Het landschap van de Bommelerwaard. With summary in English. Nederlandse Geografische Studies 10: 184 pp.Google Scholar
Berendsen, H.J.A., 1990. River courses in the central Netherlands during the Roman Period. Berichten van de Rijksdienst voor het Oudheidkundig Bodemonderzoek 40: 243–249.Google Scholar
Berendsen, H.J.A., 1998. Bird’s-eye view of the Rhine-Meuse delta. The World Deltas Symposium, New Orleans, Journal of Coastal Research 14: 740–752.Google Scholar
Berendsen, H.J.A., Hoek, W.Z. and Schorn, E.A., 1995. Late Weichselian and Holocene River Channel Changes of the Rivers Rhine and Meuse in the Central Netherlands (Land van Maas en Waal). In: Frenzel, B., (ed.): European river activity and climate change during the Lateglacial and early Holocene. ESF Project European Palaeoclimate and Man 9. Paläoklimaforschung / Paleoclimate Research 14: 151–171.Google Scholar
Berendsen, H.J.A. and Stouthamer, E., 2000. Late Weichselian and Holocene palaeogeography of the Rhine-Meuse delta, The Netherlands. Palaeogeography, Palaeoclimatology, Palaeoecology 161:311–335.CrossRefGoogle Scholar
Berendsen, H.J.A. and Stouthamer, E., 2001. Palaeogeographical development of the Rhine-Meuse delta, The Netherlands. Van Gorkum (Assen): 250 pp.Google Scholar
Bohncke, S., Vandenberghe, J. and Huijzer, A.S., 1993. Periglacial paleoenvironment during the Late Glacial in the Maas valley, The Netherlands. Geologie en Mijnbouw 72: 193–210.Google Scholar
Friedrich, M., Kromer, B., Spurk, M., Hofmann, J. and Kaiser, K.F., 1999. Paleo-environment and radiocarbon calibration as derived from Lateglacial/Early Holocene tree-ring chronologies. Quaternary International 61: 27–39.CrossRefGoogle Scholar
Hoek, W.Z., 1997. Palaeogeography of Lateglacial Vegetations: Aspects of Lateglacial and Early Holocene vegetation, the abiotic landscape and climate of the Netherlands, and Atlas to Palaeogeography of Lateglacial Vegetations: Maps of the Lateglacial and Early Holocene landscape and vegetation of the Netherlands, with an extensive review of Palynological data. Ph. D. Thesis, Free University, Amsterdam. Also published as: Netherlands Geographical Studies 230 and 231, KNAG, Utrecht.Google Scholar
Huisink, M., 1997. Lateglacial sedimentological and morphological changes in a lowland river in response to climate change: the Maas, southern Netherlands. Journal of Quaternary Science 12: 209–223.3.0.CO;2-P>CrossRefGoogle Scholar
Jones, L.S. and Schumm, S.A., 1999. Causes of avulsion: an overview, In: Smith, N.D., and Rogers, J. (eds.): Fluvial Sedimentology VI, Spec. Pubis. Int. Ass. Sediment. 28: 171–178.Google Scholar
Kasse, C. Vandenberghe, J. and Bohncke, S.J.P., 1995. Climatic change and fluvial dynamics of the Maas during the Late Weichselian and Early Holocene. Paläoklimaforschung / Palaeoclimate Research Vol 14: 123–150.Google Scholar
Kwadijk, J., 1993. The impact of climate change on the discharge of the River Rhine. Ph.D. thesis Utrecht University, KNAG/ Faculteit Ruimtelijke Wetenschappen Universiteit Utrecht, Netherlands Geographical Studies 171:208 pp.Google Scholar
Makaske, B., 1998. Anastoming rivers - Forms, processes and sediments. Ph. D. Thesis. Utrecht: KNAG/Faculteit Ruimtelijke Wetenschappen Universiteit Utrecht, Netherlands Geographical Studies 249: 287 pp.Google Scholar
Makaske, B. and Nap, R.L., 1995. A transition from a braided to a meandering channel facies, showing inclined heterolithic stratification (Late Weichselian, central Netherlands). Geologie en Mijnbouw 74: 13–20.Google Scholar
Miedema, R., 1987. Soil formation, microstructure and physical behaviour of Late Weichselian and Holocene Rhine deposits in the Netherlands. Ph. D. Thesis, Wageningen: 339 pp.Google Scholar
Nederlands Instituut voor Toegepaste Geowetenschappen, 1998. De geologie van Zuid-Holland. Utrecht: NITG-TNO, CDROM.Google Scholar
Pons, L.J., 1957. De geologie, de bodemvorming en de waterstaatkundige ontwikkeling van het Land van Maas en Waal en een gedeelte van het Rijk van Nijmegen. ‘s-Gravenhage: Verslagen van Landbouwkundige Onderzoekingen 63.11, Dissertatie Wageningen. Bodemkundige Studies 3: 156 pp.Google Scholar
Pons, L.J. and Schelling, J., 1951. De laatglaciale afzettingen van de Rijn en de Maas. Geologie en Mijnbouw 13: 293–297.Google Scholar
Smith, N.D., Cross, T.A., Dufficy, J.P. and Clough, S.R., 1989. Anatomy of an avulsion. Sedimentology 36: 1–23.CrossRefGoogle Scholar
Steenbeek, R., 1990. On the balance between wet and dry. Vegetation horizon development and prehistorie occupation; a palaeoecological - micromorphological study in the Dutch river area. Ph. D. Thesis, Free University, Amsterdam: 267 pp.Google Scholar
Stouthamer, E. and Berendsen, H.J.A., 2000a. Factors controlling the Holocene avulsion history of the Rhine-Meuse delta (The Netherlands). Journal of Sedimentary Research 70: 1051–1064.CrossRefGoogle Scholar
Terwindt, J.H.J., 1992. Het gedrag van de kust. Dies-rede, Utrecht University, 10 p.Google Scholar
Teunissen, D. and Teunissen-van Oorschot, H., 1974. Eine interstadiale Torfschicht bei Nijmegen (Niederlande) und deren Bedeutung für die Erklärung der dortigen Landschaft morphologie. Geologie en Mijnbouw 53: 393–400.Google Scholar
Törnqvist, T.E., 1993a. Fluvial sedimentary geology and chronology of the Holocene Rhine-Meuse delta, The Netherlands. Ph.D. thesis Utrecht University, KNAG/Faculteit Ruimtelijke Wetenschappen Universiteit Utrecht, Netherlands Geographical Studies 166:176 pp.Google Scholar
Törnqvist, T.E., 1993b. Holocene alternation of meandering and anastomosing fluvial systems in the Rhine-Meuse delta (central Netherlands) controlled by sea-level rise and subsoil erodibility. Journal of Sedimentary Petrology 63: 683–693.Google Scholar
Törnqvist, T.E., 1998. Longitudinal profile evolution of the Rhine-Meuse system during the last deglaciation: interplay of climate change and glacio-eustasy? Terra Nova 10:. 11–15.CrossRefGoogle Scholar
Törnqvist, T.E. and Van Dijk, G.J., 1993. Optimizing sampling strategy for radiocarbon dating of Holocene fluvial systems in a vertically aggrading setting. Boreas 22: 129–145.CrossRefGoogle Scholar
Törnqvist, T.E., Weerts, H.J.T. and Berendsen, H.J.A., 1994. Definition of two new members in the upper Kreftenheye and Twente Formations (Quaternary, The Netherlands): a final solution to persistent confusion? Geologie en Mijnbouw 72: 251–264.Google Scholar
Törnqvist, T.E., Van Ree, M., Van ‘t Veer, R. and Van Geel, B., 1998. Improving Methodology for High-resolution Reconstruction of Sea-level Rise and Neotectonics by Paleoecological Analysis and AMS 14C Dating of Basal Peats (Rhine-Meuse Delta, The Netherlands). Quaternary Research 49: 72–85.CrossRefGoogle Scholar
Van de Meene, E.A., 1979. Het ontstaan van de Geldersche IJssel. Koninklijk Nederlands Aardrijkskundig Genootschap, Geografisch Tijdschrift, Nieuwe Reeks 13: 202–210.Google Scholar
Van de Meene, E.A. and Zagwijn, W.H., 1978. Die Rheinlaufe im deutsch-niederländischen Grenzgebiet seit der Saale-Kaltzeit. Überblick neuer geologischer und pollenanalytischer Untersuchungen. Fortschr. Geol. Rheinld. u. West 28: 345–359.Google Scholar
Van der Valk, L., 1992. Mid- and Late Holocene Coastal Evolution in the Beach-Barrier Area of the Western Netherlands. Ph. D. Thesis Vrije Universiteit Amsterdam: 235 pp.Google Scholar
Van Dijk, G.J., Berendsen, H.J.A. and Roeleveld, W. 1991. Holocene water level development in The Netherlands’ river area; implications for sea-level reconstruction. Geologie en Mijnbouw 70: 311–326.Google Scholar
Van Es, W.A. and Hessing, W.A.M., (Eds.) 1994., Romeinen, Friezen en Franken. Utrecht: Matrijs, Amersfoort: ROB.Google Scholar
Van Geel, B., Buurman, J. and Waterbolk, H.T., 1996. Archaeological and palaeocological indications of an abrupt climate change in the Netherlands, and evidence for climatological teleconnec-tions around 2650 BP. Journal of Quaternary Science 11: 451–460.3.0.CO;2-9>CrossRefGoogle Scholar
Vandenberghe, J., 1987. Changing fluvial processes in a small lowland valley at the end of the Weichselian Pleniglacial and during the Late Glacial. In: Gardiner, V (Ed.): Proceedings of the First International Conference on Geomorphology, Part 1, Manchester 1986:. 731–747.Google Scholar
Verbraeck, A., 1984. Toelichtingen bij de geologische kaart van Nederland, schaal 1:50.000, bladen Tiel West (39W) en Tiel Oost (390). Rijks Geologische Dienst, Haarlem: 335 pp.Google Scholar
Verbraeck, A., 1990. De Rijn aan het einde van de laatste ijstijd: De vorming van de jongere afzettingen van de Formatie van Kreftenheye. Geografisch Tijdschrift Nieuwe Reeks XXIV: 328–340.Google Scholar
Weerts, H.J.T. and Berendsen, H.J.A., 1995. Late Weichselian and Holocene fluvial palaeogeography of the southern Rhine-Meuse delta (The Netherlands). Geologie en Mijnbouw 74: 199–212.Google Scholar
Zagwijn, W.H., 1986. Nederland in het Holoceen. Staatsdrukkerij (‘s-Gravenhage): 46 pp.Google Scholar