Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T14:39:49.514Z Has data issue: false hasContentIssue false

Hormonal Control of Gut Motility in Ruminants and Non-Ruminants and Its Nutritional Implications

Published online by Cambridge University Press:  14 December 2007

J. Fioramonti
Affiliation:
Department of Pharmacology, INRA, 180 chemin de Tournefeuille, 31300 Toulouse, France
L. Bueno
Affiliation:
Department of Pharmacology, INRA, 180 chemin de Tournefeuille, 31300 Toulouse, France
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © The Nutrition Society 1988

References

REFERENCES

Abrahamsson, H. (1973). Studies on the inhibitory nervous control of gastric motility. Acta Physiologica Scandinavica 390, Suppl., 138.Google ScholarPubMed
Aizawa, L., Itoh, A., Harris, V. & Unger, R. (1981). Plasma somatostatin-like immunoreactivity during the interdigestive period in the dog. Journal of Clinical Investigations 68, 206213.CrossRefGoogle ScholarPubMed
Al Saffar, A. & Rosell, S. (1981). Effects of neurotensin and neurotensin analogues on the migrating myoelectrical complexes in the small intestine of rats. Acta Physiologica Scandinavica 112, 203208.CrossRefGoogle ScholarPubMed
Ash, R. W. (1961). Stimuli influencing the secretion of acid by the abomasum of sheep. Journal of Physiology 157, 185207.CrossRefGoogle ScholarPubMed
Banta, C. A., Clemens, E. T., Krinsky, M. M. & Sheffy, B. E. (1979). Sites of organic acid production and patterns of digesta movements in the gastrointestinal tract of dogs. Journal of Nutrition 109, 15921600.CrossRefGoogle ScholarPubMed
Bell, F. R. & Grivel, M. L. (1975). The effect of duodenal infusion on the electromyogram of gastric muscle during activation and inhibition of gastric emptying. Journal of Physiology 248, 377391.CrossRefGoogle ScholarPubMed
Bell, F. R., Titchen, D. A. & Watson, D. J. (1977). The effect of the gastrin analogue, pentagastrin on the gastrin electromyogram and abomasal emptying in the calf. Research in Veterinary Science 23, 165170.CrossRefGoogle ScholarPubMed
Bormans, V., Peeters, T. L., Janssens, J., Pearce, D., Vandeweerd, M. & Vantrappen, G. (1987). In man, only activity fronts that originate in the stomach correlate with motilin peaks. Scandinavian Journal of Gastroenterology 22, 781784.CrossRefGoogle ScholarPubMed
Borody, T. J., Byrnes, D. J., Slowiaczek, J. G. & Titchen, D. A. (1981). Motilin and migrating myoelectric complexes in pigs. Journal of Physiology 310, 37P38P.Google Scholar
Brown, J. C., Cook, M. A. & Dryburgh, J. R. (1972). Motilin, a gastric motor activity-stimulating polypeptide: final purification, amino acid composition, and C-terminal residues. Gastroenterology 61, 401404.CrossRefGoogle Scholar
Bruce, L. A. & Hubert, T. L. (1973). Inhibitory effect of acid in the intestine on rumen motility in sheep. Journal of Animal Science 37, 164168.CrossRefGoogle ScholarPubMed
Bueno, L. (1977). Complexe myoélectrique de I'intestin grêle et variations de l'apport alimentaire chez le mouton (Myoelectric complex of the small intestine and variations of food intake in the sheep). Comptes Rendus de la Société dè Biologie 171, 959964.Google Scholar
Bueno, L., Duranton, A. & Ruckebusch, Y. (1983 a). Antagonistic effects of naloxone on CCK-octapeptide induced satiety and rumino-reticular motility in sheep. Life Sciences 32, 855863.CrossRefGoogle ScholarPubMed
Bueno, L., Fargeas, M. J., Fioramonti, J. & Primi, M. P. (1985 a). Central control of intestinal motility by prostaglandins: a mediator of the action of several peptides in rats and dogs. Gastroenterology 88, 18881894.CrossRefGoogle ScholarPubMed
Bueno, L. & Ferre, J. P. (1982). Central regulation of intestinal motility by somatostatin and cholecystokinin octapeptide. Science 216, 14271429.CrossRefGoogle ScholarPubMed
Bueno, L., Ferre, J. P., Fioramonti, J. & Honde, C. (1983 b). Effects of intracerebroventricular administration of neurotensin, substance P and calcitonin on gastrointestinal motility in normal and vagotomized rats. Regulatory Peptides 6, 197205.CrossRefGoogle ScholarPubMed
Bueno, L., Ferre, J. P., Fioramonti, J. & Ruckebusch, M. (1982 a). Control of the antral motor response to feeding by gastric acid secretion in rats. Journal of Physiology 325, 4350.CrossRefGoogle ScholarPubMed
Bueno, L. & Fioramonti, J. (1980). Rhythms of abomaso-intestinal motility. In Digestive Physiology and Metabolism in Ruminants, pp. 5380 [Ruckebusch, Y. and Thivend, P., editors]. Lancaster: MTP Press Ltd.CrossRefGoogle Scholar
Bueno, L. & Fioramonti, J. (1986). Effects of corticotropin-releasing factor, corticotropin and cortisol on gastrointestinal motility in dogs. Peptides 7, 7377.CrossRefGoogle ScholarPubMed
Bueno, L., Fioramonti, J. & Primi, M. P. (1985 b). Central effects of growth hormone-releasing factor (GRF) on intestinal motility in dogs: involvement of dopaminergic receptors. Peptides 6, 403407.CrossRefGoogle ScholarPubMed
Bueno, L., Fioramonti, J., Rayner, V. & Ruckebusch, Y. (1982 b). Effects of motilin somatostatin and pancreatic polypeptide on the migrating myoelectric complex in pigs and dogs. Gastroenterology 44, 13951402.CrossRefGoogle Scholar
Bueno, L., Fioramonti, J. & Ruckebusch, Y. (1975). Rate of flow of digesta and electrical activity of the small intestine in dogs and sheep. Journal of Physiology 249, 6985.CrossRefGoogle ScholarPubMed
Bueno, L., Fioramonti, J. & Ruckebusch, Y. (1981). Gastric pH changes associated with duodenal motility in fasted dogs. Journal of Physiology 316, 319325.CrossRefGoogle ScholarPubMed
Bueno, L. & Gue, M. (1988). Evidence for the involvement of corticotropin-releasing factor in the gastrointestinal disturbances induced by acoustic and cold stress in mice. Brain Research 441, 14.CrossRefGoogle ScholarPubMed
Bueno, L. & Ruckebusch, M. (1976). Insulin release and jejunal electrical activity in dogs and sheep. American Journal of Physiology 230, 15381544.CrossRefGoogle ScholarPubMed
Bueno, L. & Ruckebusch, Y. (1974). The cyclic motility of the omasum and its control in sheep. Journal of Physiology 238, 295312.CrossRefGoogle ScholarPubMed
Bueno, L. & Ruckebusch, Y. (1978). Migrating myoelectrical complexes. Disruption, enhancement and disorganisation. In Proceedings of the 6th International Symposium on Gastrointestinal Motility, Edinburgh, 1977, pp. 8390 [Duthie, H. L., editor]. Lancaster: MTP Press Ltd.Google Scholar
Bueno, L., Weekes, T. E. C. & Ruckebusch, Y. (1977). Effects of diet on the motility of the small intestine and plasma insulin levels in sheep. Annales de Recherches Vétérinaires 8, 95104.Google ScholarPubMed
Burrows, C. F., Merritt, A. M. & Tash, J. (1986). Jejunal myoelectrical activity in the conscious neonatal pig. Journal of Physiology 374, 349357.CrossRefGoogle ScholarPubMed
Chey, W. Y., Lee, K. Y. & Tai, H. H. (1978). Endogenous plasma motilin concentration and interdigestive myoelectric activity of the canine duodenum. In Gut Hormones, pp. 355358 [Bloom, S. R., editor]. Edinburgh: Churchill Livingstone.Google Scholar
Code, C. F. & Marlett, J. A. (1975). The interdigestive myoelectric complex of the stomach and the small bowel of dogs. Journal of Physiology 246, 298309.CrossRefGoogle ScholarPubMed
Code, C. F. & Schlegel, J. F. (1974). The gastrointestinal housekeeper. In Gastrointestinal Motility, pp. 631633. [Daniel, E. E., editor]. Vancouver: Mitchell Press.Google Scholar
Debas, H. T., Farooq, O. & Grossman, M. I. (1975). Inhibition of gastric emptying is a physiological action of cholecystokinin. Gastroenterology 68, 12111217.CrossRefGoogle ScholarPubMed
Defilippi, C. & Valenzuela, J. E. (1981). Sham feeding disrupts the interdigestive motility complex in man. Scandinavian Journal of Gastroenterology 16, 977979.CrossRefGoogle ScholarPubMed
Deloof, S. & Rousseau, J. P. (1985). Specific effects of thoracic vagotomy on the electrical activity of the gastric antrum and pylorus in rabbits. Quarterly Journal of Experimental Physiology 70, 491501.CrossRefGoogle ScholarPubMed
De Wever, I., Eeckhout, C., Vanrappen, G. & Hellemans, J. (1978). Disruptive effect of test meals on interdigestive motor complex in dogs. American Journal of Physiology 235, E661E665.Google ScholarPubMed
Diamant, N. E., Hall, K., Mui, H. & El Sharkawy, T. Y. (1980). Vagal control of the feeding motor pattern in the lower oesophageal sphincter, stomach and small intestines of dog. In Gastrointestinal Motility, pp. 365370. [Christensen, J., editor]. New York: Raven Press.Google Scholar
Dimagno, E. P., Hendricks, J. C., Go, V. L. W. & Dozois, R. R. (1979). Relationships among canine fasting pancreatic and biliary secretions, pancreatic duct pressure, and duodenal phase III motor activity. Boldyreff revisited. Digestive Diseases and Sciences 24, 689693.CrossRefGoogle ScholarPubMed
Domschke, W.Strunz, V.Mitznegg, P., Domschke, S., Wunsch, E. & Demling, L. (1976). Motilin and motilin analogues: mode of action. Scandinavian Journal of Gastroenterology 11 Suppl. 39, 2528.Google Scholar
Duc, F. (1988). Contribution à I'étude du contrôle hormonal sur la motricité duodénale chez le rat. Rôle privilégié de la cholecystokinin. (Hormonal control of duodenal motility in the rat. Role of cholecystokinin.) Doctoral Thesis, University of Lyon.Google Scholar
Duranton, A. & Bueno, L. (1983). A possible central opiate mechanism involved in the inhibition of food intake and reticular motility by duodenal DL-lactic acid infusion in sheep. American Journal of Veterinary Research 44, 802805.Google ScholarPubMed
Eeckhout, C., De Wever, I., Peeters, I., Hellemans, J. & Vantrappen, G. (1978). Role of gastrin and insulin in postprandial disruption of migrating complex in dog. American Journal of Physiology 235, E666E669.Google Scholar
Ehrlein, H. J. (1970). Untersuchungen über die Motorik des Labmagens der Ziege unter besonderer Berücksichtigung des Pylorus. (Study of gastric and pyloric motility in the goat.) Zentralblatt für Veterinärmedizin 17, 481497.CrossRefGoogle Scholar
Fargeas, M. J., Fioramonti, J. & Bueno, L. (1984). Prostaglandin E2: a neuromodulator in the central control of gastrointestinal motility and feeding behavior by calcitonin. Science 225, 10501052.CrossRefGoogle ScholarPubMed
Fargeas, M. J., Fioramonti, J. & Bueno, L. (1985). Central actions of calcitonin on body temperature and intestinal motility in rats: evidence for different mediations. Regulatory Peptides 11, 95103.CrossRefGoogle ScholarPubMed
Ferris, C. F., George, J. K. & Albers, H. E. (1986). Circadian rhythm of neurotensin levels in rat small intestine. Regulatory Peptides 15, 285292.CrossRefGoogle ScholarPubMed
Fioramonti, J. (1981). Etude comparée des fonctions motrices du gros intestin. (A comparative study of large intestine motor functions.) Doctoral Thesis, University of Toulouse.Google Scholar
Fioramonti, J. & Bueno, L. (1980). Motor activity in the large intestine of the pig related to dietary fibre and retention time. British Journal of Nutrition 43, 155162.CrossRefGoogle ScholarPubMed
Fioramonti, J. & Bueno, L. (1983). Diurnal changes in colonic motor profile in conscious dogs. Digestive Diseases and Sciences 28, 257264.CrossRefGoogle ScholarPubMed
Fioramonti, J. & Bueno, L. (1984). Relation between intestinal motility and mesenteric blood flow in the conscious dog. American Journal of Physiology 246, G108G113.Google ScholarPubMed
Fioramonti, J., Bueno, L. & Ruckebusch, Y. (1982). Blood sugars oscillations and duodenal migrating myoelectrical complexes. American Journal of Physiology 242, G15G20.Google Scholar
Fioramonti, J., Garcia-Villar, R., Bueno, L. & Ruckebusch, Y. (1980). Colonic myoelectrical activity and propulsion in the dog. Digestive Diseases and Sciences 25, 641646.CrossRefGoogle ScholarPubMed
Fioramonti, J. & Hubert, M. F. (1980). Motor functions of the large intestine in sheep versus cattle. Annales de Recherches Vétérinaires 11, 109115.Google ScholarPubMed
Fioramonti, J. & Ruckebusch, Y. (1978 a). On the control of caecal motility in sheep. Annales de Recherches Vétérinaires 9, 517521.Google ScholarPubMed
Fioramonti, J. & Ruckebusch, Y. (1978 b). Potentiel transmural et profil moteur de I'intestin chez le chien. (Transmural potential difference and intestinal motor profile in the dog.) Comptes Rendus de la Société de Biologie 172, 186190.Google Scholar
Fisher, R. & Cohen, S. (1973). Physiological characteristics of the human pyloric sphincter. Gastroenterology 64 6775.CrossRefGoogle ScholarPubMed
Fondacaro, J. D. (1984). Intestinal blood flow and motility. In Physiology of the Intestinal circulation, pp. 170–120. [Shepherd, A. P. and Granger, D. N., editors]. New York: Raven Press.Google Scholar
Fox, J. E. T., Track, N. S. & Daniel, E. E. (1981). Relationship of plasma motilin concentration to fat ingestion, duodenal acidification and alkalinization, and migrating motor complexes in dogs. Canadian Journal of Physiology and Pharmacology 59 180187.CrossRefGoogle ScholarPubMed
Frexinos, J., Bueno, L. & Fioramonti, J. (1985). Diurnal changes in myoelectric spiking activity of the human colon. Gastroenterology 88, 11041110.CrossRefGoogle ScholarPubMed
Gerner, T. & Haffner, J. F. W. (1977). The role of local cholinergic pathways in the motor responses to cholecystokinin and gastrin in isolated guinea-pig fundus and antrum. Scandinavian Journal of Gastroenterology 12, 751757.CrossRefGoogle ScholarPubMed
Gill, R. C., Pilot, M. A., Thomas, P. A. & Wingate, D. L. (1985). Organization of fasting and postprandial myoelectric activity in stomach and duodenum of conscious dogs. American Journal of Physiology 249, G655G661.Google ScholarPubMed
Grossman, M. I. (1977). Physiological effects of gastrointestinal hormones. Federation Proceedings 36, 1930.Google ScholarPubMed
Gue, M., Fioramonti, J., Frexinos, J., Alvinerie, M. & Bueno, L. (1987). Influence of acoustic stress by noise on gastrointestinal motility in dogs. Digestive Diseases and sciences 32, 14111471.CrossRefGoogle ScholarPubMed
Hall, K. E., Greenberg, G. R., El-Sharkawy, T. Y. & Diamant, N. E. (1983). Vagal control of migrating motor complex related peaks in canine plasma motilin, pancreatic polypeptide, and gastrin. Canadian Journal of Physiology and Pharmacology 61, 12891298.CrossRefGoogle ScholarPubMed
Hall, K. E., Greenberg, G. R., El-Sharkawy, T. Y. & Diamant, N. E. (1984). Relationship between porcine motilin-induced migrating motor complex-like activity, vagal integrity and endogenous motilin release in dogs. Gastroenterology 87, 7685.CrossRefGoogle ScholarPubMed
Hecker, J. F. & Grovum, W. L. (1975). Rates of passage of digesta and water absorption along the large intestines of sheep, cows and pigs. Australian Journal of Biological Sciences 28, 161167.CrossRefGoogle ScholarPubMed
Hinder, R. A. (1983). Individual and combined roles of the pylorus and the antrum in the canine gastric emptying of a liquid and a digestible solid. Gastroenterology 84, 281286.CrossRefGoogle Scholar
Hinder, R. A. & Kelly, K. A. (1977). Human gastric pacesetter potential. Site of origin, spread, and response to gastric transection and proximal gastric vagotomy. American Journal of Surgery 133, 2933.CrossRefGoogle ScholarPubMed
Hostein, J., Janssens, J., Vantrappen, G., Peeters, T. L., Vandeweerd, M. & Leman, G. (1984). Somatostatin induces ectopic activity fronts of the migrating motor complex via a local intestinal mechanism. Gastroenterology 87 10041008.CrossRefGoogle Scholar
Itoh, Z., Aizawa, I., Takeuchi, S. & Couch, E. F. (1975). Hunger contractions and motilin. In Proceedings of the 5th International Symposium on G.I. Motilin, pp. 4855. [Vantrappen, G., editor]. Typoff: Herentals.Google Scholar
Itoh, Z., Aizawa, I., Takeuchi, S. & Takayanagi, R. (1977). Diurnal changes in gastric motor activity in conscious dogs. Digestive Diseases and Sciences 22, 117124.CrossRefGoogle ScholarPubMed
Itoh, Z., Takeuchi, S., Aizawa, I., Mori, K., Taminato, T., Seino, Y., Imura, H. & Yanaihara, N. (1978). Changes in plasma motilin concentration and gastrointestinal contractile activity in the conscious dog. American Journal of Digestive Diseases 23, 929935.CrossRefGoogle Scholar
Jahnberg, T. (1977). Gastric adaptative relaxation. Scandinavian Journal of Gastroenterology 12, Suppl., 132.CrossRefGoogle Scholar
Janssens, J., Hellemans, J., Adrian, T. E., Bloom, S. R., Peeters, T. L., Christofides, N. & Vantrappen, G. R. (1982). Pancreatic polypeptide is not involved in the regulation of the migrating motor complex in man. Regulatory Peptides 3, 4149.CrossRefGoogle Scholar
Janssens, J., Vantrappen, G. & Peeters, T. L. (1983). The activity front of the migrating motor complex of the human stomach but not of the small intestine is motilin-dependent. Regulatory Peptides 6, 363369.CrossRefGoogle Scholar
Karmeli, R., Kamei, C., Schmalz, P., Yaksh, T. & Szurszewski, J. H. (1987). The effect of intracerebroventricular perfusion with CCK-OP on gastrointestinal myoelectric activity in the dog. Digestive Diseases and Sciences 32, 916.Google Scholar
Kay, R. N. B. (1965). Movement of food through the abomasum. Wiener Tierärztliche Monatsschrift 5, 539546.Google Scholar
Keane, F. B., DiMagno, E. P., Dozois, R. R. & Go, V. L. W. (1980). Relationships among canine interdigestive exocrine pancreatic and biliary flow, duodenal motor activity, plasma pancreatic polypeptide and motilin. Gastroenterology 78, 310316.CrossRefGoogle ScholarPubMed
Kelly, K. A., Code, C. F. & Elveback, L. R. (1969). Patterns of canine gastric electrical activity. American Journal of Physiology 217, 461470.CrossRefGoogle ScholarPubMed
Krejs, G. J., Orci, L., Conlon, J. M., Ravazzola, M., Davis, G. R., Raskin, P., Colin, S. M., McCarthy, D. M., Baetens, D., Rubenstein, A., Aldor, T. A. M. & Unger, R. H. (1979). Somatostatinoma syndrome. Biochemical, morphological and clinical features. New England Journal of Medicine 301, 285292.CrossRefGoogle ScholarPubMed
Larsson, L. I. & Rehfeld, J. R. (1979). Localization and molecular heterogeneity of cholecystokinin in the central and peripheral nervous system. Brain Research 165, 201218.CrossRefGoogle ScholarPubMed
Lee, K. Y., Chey, W. Y., Tai, H. H. & Yajima, H. (1978). Radioimmunoassay of motilin: validation and studies on the relationship between plasma motilin and interdigestive myoelectric activity of the duodenum of dog. American Journal of Digestive Diseases 23, 789795.CrossRefGoogle ScholarPubMed
Lee, K. Y., Kim, M. S. & Chey, W. Y. (1980). Effects of a meal and gut hormones on plasma motility and duodenal motility in dog. American Journal of Physiology 238, G280G283.Google ScholarPubMed
Lewis, T. D., Collins, S. M., Fox, J. E. T., Daniel, E. E. & Track, N. S. (1979). Initiation of migrating myoelectric complexes. Gastroenterology 77, 12171224.CrossRefGoogle Scholar
Liddle, R. A., Goldfine, I. D., Rosen, M. S., Taplitz, R. A. & Williams, J. A. (1985). Cholecystokinin bioactivity in human plasma: molecular forms, responses to feeding and relationship to gallbladder contraction. Journal of Clinical Investigation 75, 11441152.CrossRefGoogle ScholarPubMed
Lux, G., Femppel, J., Lederer, P., Rösch, W. & Domschke, W. (1980). Somatostatin induces interdigestive intestinal motor and secretory complex-like activity in man. Gastroenterology 78, 1212.Google Scholar
McLaughlin, C. L., Baile, C. A. & Della-Fera, M. A. (1986). Changes in brain CCK concentrations with peripheral CCK injections in Zucker rats. Physiology and Behavior 36, 477482.CrossRefGoogle ScholarPubMed
McLeay, L. M. & Bell, F. R. (1980). Effect of cholecystokinin, secretin, glucagon and insulin on gastric emptying and acid secretion in the calf. American Journal of Veterinary Research 41, 15901594.Google Scholar
McLeay, L. M. & Titchen, D. A. (1975). Gastric, antral and fundic pouch secretion in sheep. Journal of Physiology 248, 595612.CrossRefGoogle ScholarPubMed
Marik, F. & Code, C. F. (1975). Control of the interdigestive myoelectric activity in dogs by the vagus nerves and pentagastrin. Gastroenterology 69, 387395.CrossRefGoogle ScholarPubMed
Morgan, K. G., Schmalz, P. F., Go, V. L. W. & Szurszewski, J. H. (1978). Electrical and mechanical effects of molecular variants of CCK on antral smooth muscle. American Journal of Physiology 235, E324E239.Google ScholarPubMed
Mukhopadhyay, A. K., Thor, P. J., Copeland, E. M., Johnson, L. R. & Weisbrodt, N. W. (1977). Effect of cholecystokinin on myoelectric activity of small bowel of the dog. American Journal of Physiology 232, E44E47.Google ScholarPubMed
Nakaya, M., Takeuchi, S., Aizawa, I. & Itoh, Z. (1981). Involvement of the central nervous system in regulation of interdigestive contractions in the stomach. Zeitschrift für Gastroenterologie 19, 435.Google Scholar
Onapito, S. J., Donawick, W. J. & Merritt, A. M. (1978). Effects of gastrin on emptying and composition of digesta of the omasum of sheep. American Journal of Veterinary Research 39, 14561458.Google ScholarPubMed
Ormsbee, H. S., Telford, G. L. & Mason, G. R. (1979). Required neural involvement in control of canine migrating motor complex. American Journal of Physiology, 237, E451E456.Google ScholarPubMed
Ormsbee, H. S., Koehler, S. L. & Telford, G. L. (1978). Somatostatin inhibits motilin-induced interdigestive contractile activity in the dog. Digestive Diseases and Sciences 23, 781788.CrossRefGoogle ScholarPubMed
Owyang, C., Achem-Karam, S. R. & Vinik, A. I. (1983). Pancreatic polypeptide and intestinal migrating motor complex in humans. Effect of pancreaticobiliary secretion. Gastroenterology 84, 1017.CrossRefGoogle ScholarPubMed
Pascaud, X., Ferre, J. P., Genton, M., Roger, A., Ruckebusch, Y. & Bueno, L. (1982). Intestinal motility response to insulin and glucagon in streptozotocin diabetic rats. Canadian Journal of Physiology and Pharmacology 60, 960967.CrossRefGoogle ScholarPubMed
Peeters, T. L., Janssens, J. & Vantrappen, G. R. (1983). Somatostatin and the interdigestive migrating motor complex in man. Regulatory Peptides 5, 209217.CrossRefGoogle ScholarPubMed
Peeters, T. L., Vantrappen, G. & Janssens, J. (1980). Fasting plasma motilin levels are related to the interdigestive motility complex. Gastroenterology 79, 716719.CrossRefGoogle Scholar
Peeters, T. L., Vantrappen, G. & Janssens, J. (1982). In Control of Gut Motility in Systemic Role of Regulatory Peptides, pp. 195207. [Bloom, S. R. and Polak, J. M., editors]. Stuttgart: Schattauer Verlag.Google Scholar
Plonait, H. (1974). Measurement of stomach motility using surgically implanted telemetry transmitters. Proceedings of the 3rd International Congress of the Pig Veterinary Society, Lyon, p. L10 (3–6).Google Scholar
Poitras, P., Steinbach, J. H. & Van Devenier, G. (1980). Motilin-independent ectopic fronts of the interdigestive myoelectric complex in dogs. American Journal of Physiology 239, G125G220.Google ScholarPubMed
Quigley, J. P. & Louckes, H. S. (1962). Gastric emptying. American Journal of Digestive Diseases 7, 672676.CrossRefGoogle ScholarPubMed
Rayner, V., Christofides, N. D., Gregory, P., Goodall, E. D. & Bloom, S. R. (1987). Motilin secretion and the migrating myoelectric complex in the pig. Quarterly Journal of Experimental Physiology 72, 5160.CrossRefGoogle ScholarPubMed
Rayner, V., Weekes, T. E. C. & Bruce, J. B. (1981). Insulin and myoelectric activity of the small intestine of the pig. Digestive Diseases and Sciences 26, 3341.CrossRefGoogle ScholarPubMed
Rayner, V. & Wenham, G. (1986). Small intestinal motility and transit by electromyography and radiology in the fasted and fed pig. Journal of Physiology 379, 245256.CrossRefGoogle ScholarPubMed
Read, N. W. (1980). The migrating motor complex and spontaneous fluctuations of transmural potential difference in the human small intestine. In Gastrointestinal Motility, pp. 299306. [Christensen, J. editor]. New York: Raven Press.Google Scholar
Rees, W. D. W., Malagelada, J. R., Miller, L. J. & Go, V. L. W. (1982). Human interdigestive and postprandial gastrointestinal motor and gastrointestinal hormone patterns. Digestive Diseases and Sciences 527, 321329.CrossRefGoogle Scholar
Renaud, L. P., Tang, M., McCann, M. J., Stricker, E. M. & Verbalis, J. G. (1987). Cholecystokinin and gastric distension activate oxytocinergic cells in rat hypothalamus. American Journal of Physiology 253, R661R665.Google ScholarPubMed
Renny, A., Snape, W. J., Sun, E. A., London, R. & Cohen, S. (1983). Role of cholecystokinin in the gastrocolonic response to a fat meal. Gastroenterology 85, 1721.CrossRefGoogle ScholarPubMed
Rivier, C., Rivier, J. & Vale, W. (1982). Inhibition of adrenocorticotropic hormone secretion in the rat by immunoneutralisation of corticotropin releasing factor. Science 218, 377378.CrossRefGoogle Scholar
Roche, M., Bueno, L., Vagne, M. & Blourde, C. (1982). Patterns of electrical activity in the digestive tract of conscious cats. British Journal of Nutrition 48, 129135.CrossRefGoogle Scholar
Ruckebusch, M. & Ferre, J. P. (1973). Origine alimentaire des variations nycthémérales de l'activité électrique de l'intestin grêle chez le rat. (Alimentary origin of the nycthemeral variations of intestinal activity in the rat.) Comptes Rendus de la Société de Biologie 167, 20052009.Google Scholar
Ruckebusch, M. & Fioramonti, J. (1975). Electrical spiking activity and propulsion in small intestine in fed and fasted rats. Gastroenterology 68, 15001508.CrossRefGoogle Scholar
Ruckebusch, Y. (1970). The electrical activity of the digestive tract of the sheep as an indication of the mechanical events in various regions. Journal of Physiology 210, 857882.CrossRefGoogle ScholarPubMed
Ruckebusch, Y. (1971). The effect of pentagastrin on the motility of ruminant stomach. Experientia 27, 11851186.CrossRefGoogle ScholarPubMed
Ruckebusch, Y. & Bueno, L. (1973). The effect of weaning on the motility of the small intestine in the calf. British Journal of Nutrition 30, 491499.CrossRefGoogle ScholarPubMed
Ruckebusch, Y. & Bueno, L. (1976). The effect of feeding on the motility of the stomach and small intestine in the pig. British Journal of Nutrition 35, 397405.CrossRefGoogle Scholar
Ruckebusch, Y. & Bueno, L. (1977 a). Origin of migrating myoelectric complex in sheep. American Journal of Physiology 233, E483E487.Google ScholarPubMed
Ruckebusch, Y. & Bueno, L. (1977 b). Migrating myoelectrical complex of the small intestine. An intrinsic activity mediated by the vagus. Gastroenterology 73, 13091314.CrossRefGoogle ScholarPubMed
Sarna, S., Chey, W. Y., Condon, R. E., Dodds, W. J., Myers, T. & Chang, T. (1983). Cause-and-effect relationship between motilin and migrating myoelectric complexes. American Journal of Physiology 245, G277G284.Google ScholarPubMed
Sarr, M. G. & Kelly, K. A. (1981). Myoelectric activity of the autotransplanted canine jejuno ileum. Gastroenterology 81, 303310.CrossRefGoogle Scholar
Sarr, M. G., Kelly, K. A. & Phillips, S. F. (1980). Canine jejunal absorption and transit during interdigestive and digestive motor states. American Journal of Physiology 239, G167G172.Google ScholarPubMed
Schick, R. F., Reilly, W. M., Roddy, D. R., Yaksh, T. L. & Go, V. L. W. (1987). Neuronal cholecystokinin-like immunoreactivity is postprandially released from primate hypothalamus. Brain Research 418, 2026.CrossRefGoogle ScholarPubMed
Schippers, E., Janssens, J., Vantrappen, G., Vandeweerd, M. & Peeters, T. L. (1986). Somatostatin induces ectopic activity fronts via a local intestinal mechanism during fed state or pentagastrin. American Journal of Physiology 250, G149G154.Google ScholarPubMed
Schwartz, T. W., Stanquist, B., Olbe, L. & Stadil, F. (1979). Synchronous oscillations in the basal secretion of pancreatic polypeptide and gastric acid. Gastroenterology 76, 1419.CrossRefGoogle ScholarPubMed
Scott, L. D. & Cahall, D. L. (1982). Influence of the interdigestive myoelectric complex on enteric flora in the rat. Gastroenterology 82, 737745.CrossRefGoogle ScholarPubMed
Shaw, C. & Buchanan, K. D. (1983). Intact neurotensin (NT) in human plasma: response to oral feeding. Regulatory Peptides 7, 145153.CrossRefGoogle ScholarPubMed
Sissons, J. W. (1983). Effect of feed intake on digesta flow and myoelectric activity in the gastrointestinal tract of the preruminant calf. Journal of Dairy Research 50, 387395.CrossRefGoogle ScholarPubMed
Smith, J. R., Lahann, T. R., Chesnut, R. M., Carion, M. A. & Horita, A. (1977). Thyrotropin releasing hormone: stimulation of colonic activity following intracerebroventricular administration. Science 196, 660662.CrossRefGoogle ScholarPubMed
Snape, W. J., Matarazzo, A. & Cohen, S. (1978). Effect of eating and gastrointestinal hormones on human colonic myoelectrical and motor activity. Gastroenterology 75, 373378.CrossRefGoogle ScholarPubMed
Snape, W. J., Wright, S. H., Battle, W. M. & Cohen, S. (1979). The gastrocolic response: evidence for a neural mechanism. Gastroenterology 77, 12351340.CrossRefGoogle ScholarPubMed
Summers, R. W., Flatt, A., Yanda, R. J. & Yamada, T. (1984). Isoproterenol induces activity fronts in fed dogs through somatostatin release. Gastroenterology 87, 9991003.CrossRefGoogle ScholarPubMed
Svendsen, P. (1969). Etiology and pathogenesis of abomasal displacement in cattle. Nordisk Veterinärmedicin 21, Suppl. 1, 140.Google Scholar
Szurszewski, J. H. (1969). A migrating electric complex of the canine small intestine. American Journal of Physiology 217, 17571763.CrossRefGoogle ScholarPubMed
Thomas, P. A. & Kelly, K. A. (1979). Hormonal control of interdigestive motor cycles of canine proximal stomach. American Journal of Physiology 237, E192E197.Google ScholarPubMed
Thomas, P. A., Kelly, K. A. & Go, V. L. W. (1979). Does motilin regulate canine interdigestive gastric motility? Digestive Diseases and Sciences 24, 577582.CrossRefGoogle ScholarPubMed
Thor, K. & Rosell, S. (1986). Neurotensin increases colonic motility. Gastroenterology 90, 2731.CrossRefGoogle ScholarPubMed
Thor, K., Rosell, S., Rokaeus, A. & Kager, L. (1982). (Gln4)-neurotensin changes the motility pattern of the duodenum and proximal jejunum from a fasting-type to a fed-type. Gastroenterology 83, 569574.CrossRefGoogle ScholarPubMed
Vantrappen, G., Janssens, J., Hellemans, J. & Ghoos, Y. (1977). The interdigestive motor complex of normal subjects and patients with bacterial overgrowth of the small intestine. Journal of Clinical Investigation 59, 11581166.CrossRefGoogle ScholarPubMed
Vantrappen, G., Janssens, J., Peeters, T. L., Bloom, S. R., Christofides, N. D. & Hellemans, J. (1979). Motilin and the interdigestive migrating motor complex in man. Digestive Diseases and Sciences 24, 497500.CrossRefGoogle ScholarPubMed
Vatner, S. F., Franklin, D. & Van Citters, R. L. (1970). Mesenteric vasoactivity associated with eating and digestion in the conscious dog. American Journal of Physiology 219, 170174.CrossRefGoogle ScholarPubMed
Weisbrodt, N. W., Copeland, E. M., Kearley, R. W., Moore, E. P. & Johnson, L. C. (1974). Effects of pentagastrin on electrical activity of small intestine of the dog. American Journal of Physiology 277, 425429.CrossRefGoogle Scholar
Weisbrodt, N. W., Copeland, E. M., Thor, P. J. & Dudrick, S. J. (1976). The myoelectric activity of the small intestine of the dog during total parenteral nutrition. Proceedings of the Society for Experimental Biology and Medicine 153, 121124.CrossRefGoogle ScholarPubMed
Wenham, G. (1974). X-ray image intensification in ruminant physiology. Proceedings of the Nutrition Society 33, 135139.CrossRefGoogle ScholarPubMed
Wilson, R. C., Goetsch, D. D. & Huber, T. L. (1976). Studies of mechanisms of action of secretin and pancreozymin on rumen motility. American Journal of Veterinary Research 37, 11311134.Google ScholarPubMed
Wingate, D. L., Pearce, E. A., Hutton, M., Dand, A., Thompson, H. H. & Wunsche, E. (1978 a). Quantitative comparison of the effects of cholecystokinin, secretin and pentagastrin on gastrointestinal myoelectric activity in the conscious fasted dog. Gut 19, 593601.CrossRefGoogle ScholarPubMed
Wingate, D. L., Pearce, E. A., Thomas, P. A. & Boucher, B. J. (1987 b). Glucagon stimulates intestinal myoelectric activity. Gastroenterology 74, 1152.Google Scholar
Wingate, D. L., Ruppin, H., Green, W. E. R., Thompson, H. H., Domschke, W., Wunsch, E. & Demling, L. & Ritchie, D. (1976). Motilin-induced electrical activity in the canine gastrointestinal tract. Scandinavian Journal of Gastroenterology 11, Suppl. 39, 111118.Google Scholar
Wright, S. H., Snape, W. J., Battle, W., Cohen, S. & London, R. L. (1980). Effect of dietary components on gastrocolonic response. American Journal of Physiology 238, G228G232.Google ScholarPubMed
Yanda, R. & Summers, R. W. (1983). Activity fronts in fed dogs: effect of a β-adrenergic agonist. American Journal of Physiology 245, G647G650.Google ScholarPubMed
You, C. H., Chey, W. Y. & Lee, K. Y. (1980). Studies on plasma motilin concentration and interdigestive motility of the duodenum in humans. Gastroenterology 79, 6266.CrossRefGoogle ScholarPubMed
Zhu, X. G., Greeley, G. H., Lewis, B. G., Lilja, P. & Thompson, J. C. (1986). Blood-CSF barrier to CCK and effect of centrally administered bombesin on release of brain CCK. Journal of Neuroscience Research 15, 393403.CrossRefGoogle Scholar