Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T12:33:39.610Z Has data issue: false hasContentIssue false

Lipids and infant formulas

Published online by Cambridge University Press:  14 December 2007

J. S. Forsyth
Affiliation:
Department of Child Health, University of Dundee, Dundee, DDI 9SY
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The ultimate goal in the design of infant formula is to achieve the outcome seen in breast fed infants. This review of lipids in infant formulas for term infants begins by referring to the lipid composition of human milk, and relates that to differences in lipid digestion and metabolism which exist between breast fed and formula fed infants and which may significantly influence fatty acid bioavailability.

Recommendations are made for the lipid content and fatty acid composition of term infant formulas (especially for lauric, linoleic, α-linolenic, long chain 20 and 22C n-3 and n-6 polyunsaturated fatty acids and the trans fatty acids).

Further research is required to define more clearly the long term nutritional, growth and developmental effects of structured lipids in formulas for term infants. More information is required on the differential handling of LCPUFA and other fatty acids at the organ and cellular level. There is a need for large (multi-centre) randomized studies to determine the short and long term functional effects of LCPUFA supplementation. Further research and development is required to determine a commercial source of LCPUFA which is safe, effective and economic. Further information is required on the short and long term effects of cholesterol intake during infancy, and in particular its relationship to LCPUFA metabolism. Long term studies should be initiated to determine the relationship of infant diet (especially saturated fatty acid and cholesterol intake) to the development of cardiovascular disease.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1998

References

Agostoni, C., Riva, E., Bellù, R., Trojan, S., Luotti, D. & Giovannini, M. (1994). Effects of diet on the lipid and fatty acid status of full term infants at 4 months. Journal ofrhe American College of Nutrition 13, 658664.CrossRefGoogle ScholarPubMed
Agostoni, C., Riva, E., Trojan, S., Bellù, R. & Giovannini, M. (1995 a). Docosahexaenoic acid status and developmental quotient of healthy term infants. Lancet 346, 638.CrossRefGoogle ScholarPubMed
Agostoni, C., Trojan, S., Bellù, R., Riva, E., Bruzzese, M. G. & Giovannini, M. (1997). Developmental quotient at 24 months and fatty acid composition of diet in early infancy: a follow-up study. Archives of Disease in Childhood 76, 421424.CrossRefGoogle ScholarPubMed
Agostoni, C., Trojan, S., Bellù, R. & Giovannini, M. (1995 b). Neurodevelopmental quotient of healthy term infants at 4 months and feeding practice: the role of long chain polyunsaturated fatty acids. Pediatric Research 38, 262266.CrossRefGoogle ScholarPubMed
Auestad, N., Montalto, M. B., Wheeler, R. E., Fitzgerald, K. R., Hall, R. T., Neuringer, M., Connor, W. E., Hartmann, E. E. & Taylor, J. A. (1995). Visual acuity, RBC fatty acids and growth in term infants fed formulas with and without long chain polyunsaturated fatty acids (LCP). Pediatric Research 37, 302A.Google Scholar
Bernbäck, S., Bläckberg, L. & Hernell, O. (1989) Fatty acids generated by gastric lipase promote human milk triacylglycerol digestion by pancreatic colipase-dependent lipase. Biochimica et Biophysica Acra 1001, 286293.CrossRefGoogle ScholarPubMed
Bernbäck, S., Bläckberg, L. & Hernell, O. (1990). The complete digestion of human milk triacylglycerol in vitro requires gastric lipase, pancreatic colipase-dependent lipase, and bile salt-stimulated lipase. Journal of Clinical Investigation 85, 12211226.CrossRefGoogle ScholarPubMed
Birch, D. G., Birch, E. E., Hoffman, D. R. & Uauy, R. D. (1992 a). Retinal development in very low birth weight infants fed diets differing in omega-3 fatty acids. Investigative Ophthalmology and Vision Science 33, 23652376.Google ScholarPubMed
Birch, E. E., Birch, D. G., Hoffman, D. R., Hale, L., Everett, M. & Uauy, R. D. (1993). Breast feeding and optimal visual development. Journal of Pediatric Ophthalmology and Strabismus 30, 3338.CrossRefGoogle ScholarPubMed
Birch, E. E., Birch, D. G., Hoffman, D. R. & Uauy, R. D. (1992 b). Dietary essential fatty acid supply and visual acuity development. Investigative Ophthalmology and Visual Science 33, 32423253.Google ScholarPubMed
Bitman, J., Wood, D. L., Hamosh, M., Hamosh, P. & Mehta, N. R. (1983). Comparison of the lipid composition of breast milk from mothers of term and preterm infants. American Journal of Clinical Nutrition 38, 300312.CrossRefGoogle ScholarPubMed
Bitman, J., Wood, D. L., Mehta, N. R., Hamosh, P. & Hamosh, M. (1984). Comparison of the phospholipid composition of breast milk from mothers of term and preterm infants during lactation. American Journal of Clinical Nutrition 40, 11031119CrossRefGoogle ScholarPubMed
Bläckberg, L., Ängquist, K.-A. & Hernell, O. (1987). Bile salt-stimulated lipase in human milk: evidence for its synthesis in the lactating mammary gland. FEBS Letters 217, 3741.CrossRefGoogle ScholarPubMed
Boehm, G., Moro, G., Muller, D. M., Muller, H., Raffler, G. & Minoli, I. (1995). Fecal cholesterol excretion in preterm infants fed breast milk or formula with different cholesterol contents. Acta Paediatrica 84, 240244.CrossRefGoogle ScholarPubMed
Boersma, E. R., Offringa, P. J., Muskiet, F. A. J., Chase, W. M. & Simmons, I. J. (1991). Vitamin E, lipid fractions, and fatty acid composition of colostrum, transitional milk, and mature milk: an international comparative study. American Journal of Clinical Nutrition 53, 11971204.CrossRefGoogle ScholarPubMed
Bornstein, M. H. & Sigman, M. D. (1986). Continuity in mental development from infancy. Child Development 57, 251274.CrossRefGoogle ScholarPubMed
Boswell, K., Koskelo, E.-K., Cari, L., Glaza, S., Hensen, D. J., Williams, K. D. & Kyle, D. J. (1996). Preclinical evaluation of single-cell oils are highly enriched with arachidonic acid and docosahexaenoic acid. Food and Chemical Toxicology 36, 585593.CrossRefGoogle Scholar
Breckenridge, W. C., Marai, L. & Kuksis, A. (1969). Triglyceride structure of human milk fat. Canadian Journal of Biochemistry 47, 761769.CrossRefGoogle ScholarPubMed
Brenner, R. R. (1981). Nutritional and hormonal factors influencing desaturation of essential fatty acids. Progress in Lipid Research 20, 4147.CrossRefGoogle ScholarPubMed
British Nutrition Foundation (1992). Unsaturated fatty acids. Nutritional and physiological significance. The report of the British Nutrition Foundation's task force, pp. 3547. London: Chapman & Hall.Google Scholar
Carlson, S. E., Cooke, R. J., Werkman, S. H. & Tolley, E. A. (1992). First year growth of preterm infants fed standard compared to marine oil n-3 supplemented formula. Lipids 27, 901907.CrossRefGoogle ScholarPubMed
Carlson, S. E., Ford, A. J., Werkman, S. H., Peeples, J. M. & Koo, W. W. K. (1996 a). Visual acuity and fatty acid status of term infants fed human milk and formulas with and without docosahexaenoate and arachidonate from egg yolk lecithin. Pediatric Research 39, 882888.CrossRefGoogle ScholarPubMed
Carlson, S. E., Rhodes, P. G. & Ferguson, M. G. (1986). Docosahexaenoic acid and status of preterm infants at birth and following feeding with human milk or formula. American Journal of Clinical Nutrition 44, 798804.CrossRefGoogle ScholarPubMed
Carlson, S. E., Werkman, S. H., Rhodes, P. G. & Tolley, E. A. (1993). Visual-acuity development in healthy preterm infants: effect of marine-oil supplementation. American Journal of Clinical Nutrition 58, 3542.CrossRefGoogle ScholarPubMed
Carlson, S. E., Werkman, S. H. & Tolley, E. A. (1996 b). Effect of long chain n-3 fatty acid supplementation on visual acuity and growth of preterm infants with and without bronchopulmonary dysplasia. American Journal of Clinical Nutrition 63, 687697.CrossRefGoogle ScholarPubMed
Carnielli, V. P., Luijendijk, I. H. T., van Beek, R. H. T., Boerma, G. J. M., Degenhart, H. J. & Sauer, P. J. J. (1995 b). Effect of dietary triacylglycerol fatty acid positional distribution on plasma lipid classes and their fatty acid composition in preterm infants. American Journal of Clinical Nutrition 62, 776781.CrossRefGoogle ScholarPubMed
Carnielli, V. P., Luijendijk, I. H. T., van Goudoever, J. B., Sulkers, E. J., Boerlage, A. A., Degenhart, H. J. & Sauer, P. J. J. (1995 a). Feeding premature newborn infants palmitic acid in amounts and stereoisomeric position similar to that of human milk: effects on fat and mineral balance. American Journal of Clinical Nutrition 61, 10371042.CrossRefGoogle ScholarPubMed
Chen, Q., Bläckberg, L., Nilsson, Å., Sternby, B. & Hernell, O. (1994). Digestion of triacylglycerols containing long-chain polyenoic fatty acids in vitro by colipase-dependent pancreatic lipase and human milk bile salt-stimulated lipase. Biochimica et Biophysica Acta 1210, 239243.CrossRefGoogle ScholarPubMed
Chen, Q., Sternby, B. & Nilsson, Å. (1989). Hydrolysis of triacylglycerol arachidonic and linoleic acid ester bonds by human pancreatic lipase and carboxyl ester lipase. Biochimica et Biophysica Acta 1004, 372385.CrossRefGoogle ScholarPubMed
Christensen, M. M. & Høy, C.-E. (1997). Early dietary intervention with structured triacylglycerols containing docosahexaenoic acid. Effect on brain, liver, and adipose tissue lipids. Lipids 32, 185191.CrossRefGoogle ScholarPubMed
Christensen, M. M., Lund, S. P., Simonsen, L., Hass, U., Simonsen, E. & Høy, C.-E. (1996). Visual and hearing performance and learning ability of rats given structured triacylglycerols containing docosahexaenoic acid from birth. Correlation with tissue fatty acid composition. Proceedings, PUFA in Infant Nutrition: Consensus and Controversies, p. 23.Google Scholar
Clandinin, M. T., Chappell, J. E. & van Aerde, J. E. E. (1989). Requirements of newborn infants for long chain polyunsaturated fatty acids. Acta Paediatrica Scandinavica Suppl. 351, 6371.CrossRefGoogle ScholarPubMed
Clark, K. J., Makrides, M., Neumann, M. A. & Gibson, R. A. (1992). Determination of the optimal ratio of linoleic acid to α-linolenic acid in infant formulas. Journal of Pediatrics 120(4) Suppl. S151158.CrossRefGoogle ScholarPubMed
Clark, R. M. & Hundrieser, K. E. (1989). Changes in cholesteryl esters of human milk with total milk lipid. Journal of Pediatric Gastroenterology and Nutrition 9, 347350.Google ScholarPubMed
Commission of the European Communities Commission (1991). Directive on infant formulae and follow-on formulae (91/32/EEC). Official Journal of the European Communities, 4(7), 3549.Google Scholar
Cruz, M. L. A., Wong, W. W., Mimouni, F., Hachey, D. L., Setchell, K. D. R., Klein, P. D. & Tsang, R. C. (1994). Effects of infant nutrition on cholesterol synthesis rates. Pediatric Research 35, 135140.CrossRefGoogle ScholarPubMed
Decsi, T., Thiel, I. & Koletzko, B. (1995). Essential fatty acids in full term infants fed breast milk or formula. Archives of Disease in Childhood 72(1). Special Issue. F23F28.CrossRefGoogle ScholarPubMed
Department of Health (1996). Guidelines on the Nutritional Assessment of Infant Formulas: Report of the Working Group on the Nutritional assessment of Infant Formulas of the Committee on Medical Aspects of Food and Nutrition Policy (Report on Health and Social Subjects no. 47). London: HMSO.Google Scholar
Department of Health and Social Security (1981). Artificial feeds for the young infant: report of the Working Party on the Composition of Foods for Infants and Young Children (Report on Health and Social Subjects no. 18). London: HMSO.Google Scholar
Dewey, K. G., Finley, D. A. & Lönnerdal, B. (1984). Breast milk volume and composition during late lactation (7–20 months). Journal of Pediatric Gastroenterology and Nutrition 3, 713720.Google ScholarPubMed
Dils, R. R. (1989). Synthetic and secretory processes of lactation. Proceedings of the Nutrition Society 48, 915.CrossRefGoogle ScholarPubMed
Dyer, J. R. & Greenwood, C. E. (1991). Neural 22-carbon fatty acids in the weanling rat respond rapidly and specifically to a range of dietary linoleic to α-linolenic fatty acid ratios. Journal of Neurochemistry 56, 19211931.CrossRefGoogle ScholarPubMed
Edmond, J., Korsak, R. A., Morrow, J. W., Torok-Both, G. & Catlin, D. H. (1991). Dietary cholesterol and the origin of cholesterol in the brain of developing rats. Journal of Nutrition 121, 13231330.CrossRefGoogle ScholarPubMed
Emken, E. A. (1995). Trans fatty acids and coronary heart disease risk. Physicochemical properties, intake, and metabolism. American Journal of Clinical Nutrition 62, 659S669S.Google Scholar
ESPGAN Committee on Nutrition (1991). Comment on the content and composition of lipids in infant formulas. Acta Paediatrica Scandinavica 80, 887896.CrossRefGoogle Scholar
Fall, C. H. D., Barker, D. J. P., Osmond, C., Winter, P. D., Clark, P. M. S. & Hales, C. N. (1992). Relation of infant feeding to adult serum cholesterol concentration and death from ischaemic heart disease. British Medical Journal 304, 801805CrossRefGoogle ScholarPubMed
Farquharson, J., Cockburn, F., Patrick, W. A., Jamieson, E. C. & Logan, R. W. (1992). Infant cerebral coItex phospholipid fatty-acid composition and diet. Lancet 340, 810813.CrossRefGoogle ScholarPubMed
Farquharson, J., Jamieson, E. C., Abbasi, K. A., Patrick, W. J. A., Logan, R. W. & Cockburn, F. (1995). Effect of diet on the fatty acid composition of the major phospholipids of infant cerebral cortex. Archives of Disease in Childhood 72, 198203.CrossRefGoogle ScholarPubMed
Filer, L. J., Mattson, F. H. & Fomon, S. J. (1969). Triglyceride configuration and fat absorption by the human infant. Journal of Nutrition 99, 293298.CrossRefGoogle ScholarPubMed
Fomon, S. J. (1974). Infant Nutrition, 2nd edn, pp. 172174. Philadelphia, PA: W. B. Saunders.Google Scholar
Fomon, S. J., Rogers, R. R., Ziegler, E. E., Nelson, S. E. & Thomas, L. N. (1984). Indices of fatness and serum cholesterol at age eight years in relation to feeding and growth during early infancy. Pediatric Research 18, 12331238.CrossRefGoogle ScholarPubMed
Food and Drug Administration (1985). Nutrient requirements for infant formulas. Federal Register 50, 4510645108.Google Scholar
Forsyth, J. S. & Willatts, P. (1996). Do LCPUFA influence infant cognitive behaviour? In Recent Developments in Infant Nutrition, pp. 225234 [Bindles, J. G., Goedhart, A. C. and Visser, H. K. A., editors]. Lancaster: Kluwer Academic Publishers.CrossRefGoogle Scholar
Fredrikzon, B., Hernell, O., Bläckberg, L. & Olivecrona, T. (1978). Bile salt-stimulated lipase in human milk: evidence of activity in vivo and of a role in the digestion of milk retinol esters. Pediatric Research 12, 10481052.CrossRefGoogle ScholarPubMed
Friedman, G. & Goldberg, S. J. (1975). Concurrent and subsequent serum cholesterols of breast- and formula-fed infants. American Journal of Clinical Nutrition 28, 4245.CrossRefGoogle ScholarPubMed
Garda, H. A. & Brenner, R. R. (1985). In vitro modification of cholesterol content of rat liver microsomes. Effects upon membrane ‘fluidity’ and activities of glucose-6-phosphatase and fatty acid desaturation systems. Biochimica et Biophysica Acta 819, 4554.CrossRefGoogle ScholarPubMed
Ghebremeskel, K., Leighfield, M., Leaf, A., Costeloe, K. & Crawford, M. (1995) Fatty acid composition of plasma and red cell phospholipids of preterm babies fed on breast milk or formulae. European Journal of Pediatrics 154, 4652.CrossRefGoogle ScholarPubMed
Gibson, R. A. & Kneebone, G. M. (1981). Fatty acid composition of human colostrum and mature breast milk. American Journal of Clinical Nutrition 34, 252257.CrossRefGoogle ScholarPubMed
Gibson, R. A. & Kneebone, G. M. (1984). A lack of correlation between linoleate and arachidonate in human breast milk. Lipids 19, 469471.CrossRefGoogle ScholarPubMed
Gibson, R. A., Makrides, M., Neumann, M. A., Simmer, K., Mantzioris, E. & James, M. J. (1994). Ratios of linoleic acid to α-linolenic acid in formulas for term infants. Journal of Pediatrics 125(5) Suppl. S48S55.CrossRefGoogle ScholarPubMed
Glueck, C. J., Tsang, R., Balistreri, W. & Fallat, R. (1972). Plasma and dietary choiesterol in infancy: effects of early low or moderate dietary cholesterol intake on subsequent response to increased dietary cholesterol. Metabolism 21, 11811192.CrossRefGoogle ScholarPubMed
Goldstein, J. L. & Brown, M. S. (1977). The low-density lipoprotein pathway and its relations to atherosclerosis. Annual Review of Biochemistry 46, 897930.CrossRefGoogle ScholarPubMed
Graham, D. Y. & Sackman, J. W. (1983). Solubility of calcium soaps of long chain fatty acids in simulated intestinal environment. Digestive Diseases and Sciences 28, 733736.CrossRefGoogle ScholarPubMed
Hachey, D. L., Pond, W. G. & Wong, W. W. (1996). Is dietary cholesterol beneficial to the infant? In Recent Developments in Infant Nutrition, pp. 251259 [Bindels, J. G., Goedhart, A. C. and Visser, H. K. A., editors]. Lancaster: Khwer Academic Publishers.CrossRefGoogle Scholar
Hall, B. (1979). Uniformity of human milk. American Journal of Clinical Nutrition 32, 304312.CrossRefGoogle ScholarPubMed
Hamosh, M. & Bitman, J. (1992). Human milk in disease: lipid composition. Lipids 27, 848857.CrossRefGoogle ScholarPubMed
Hamosh, M., Bitman, J., Liao, T. H., Mehta, N. R., Buczek, R. J., Wood, D. L., Grylack, L. J. & Hamosh, P. (1989). Gastric lipolysis and fat absorption in preterm infants: effect of medium-chain triglyceride or long chain triglyceride-containing formulas. Pediatrics 83, 8692.CrossRefGoogle ScholarPubMed
Hamosh, M., Bitman, J., Wood, D. L., Hamosh, P. & Mehta, N. R. (1985). Lipids in milk and the first steps in their digestion. Pediatrics 75 (Suppl.), 146150.CrossRefGoogle ScholarPubMed
Hamosh, M. & Burns, B. W. (1977). Lipolytic activity of human lingual glands (Ebner). Laboratory Investigation 37, 603608.Google ScholarPubMed
Hamosh, M., Clary, T. R., Chernick, S. S. & Scow, R. O. (1970). Lipoprotein lipase activity of adipose and mammary tissue and plasma triglyceride in pregnant and lactating rats. Biochimica et Biophysica Acta 210, 473482.CrossRefGoogle ScholarPubMed
Hansen, H. O., Jensen, S. S. & Knudsen, J. (1986). Absence of monoacylglycerol pathway for triacylglycerol synthesis in goat mammary gland. Biochemical Journal 238, 173176.CrossRefGoogle ScholarPubMed
Harris, W. S., Connor, W. E. & Lindsey, S. (1984). Will dietary ω-3 fatty acids change the composition of human milk? American Journal of Clinical Nutrition 40, 780785.CrossRefGoogle ScholarPubMed
Harzer, G. & Bindels, J. G. (1987). Main compositional criteria of human milk and their implications on nutrition in early infancy. In New Aspects of Nutrition in Pregnancy, Infancy, and Prematurity, pp. 8394 [Xanthou, M., editor]. Amsterdam: Elsevier Science Publishers BV.Google Scholar
Harzer, G., Haug, M., Dieterich, I. & Gentner, P. R. (1983). Changing patterns of human milk lipids in the course of lactation and during the day. American Journal of Clinical Nutrition 37, 612621.CrossRefGoogle ScholarPubMed
Hayes, K. C., Pronczuk, A., Lindsey, S. & Diersen-Schade, D. (1991). Dietary saturated fatty acids (12:0, 14:0, 16:0) differ in their impact on plasma cholesterol and lipoproteins in nonhuman primates. American Journal of Clinical Nutrition 53, 491498.CrossRefGoogle Scholar
Hayes, K. C., Pronczuk, A., Wood, R. A. & Guy, D. G. (1992). Modulation of infant formula fat profile alters the low density lipoprotein/high density lipoprotein ratio and plasma fatty acid distribution relative to those with breast feeding. Journal of Pediatrics 120(4) Suppl. S109S116.CrossRefGoogle ScholarPubMed
Hegsted, D. M., McGandy, R. B., Myers, M. L. & Stare, F. J. (1965). Quantitative effects of dietary fat on serum cholesterol in man. American Journal of Clinical Nutrition 17, 281295.CrossRefGoogle ScholarPubMed
Hernell, O. (1990). The requirements and utilization of dietary fatty acids in the newborn infant. Acta Paediatrica Scandinavica Suppl. 365, 2027.CrossRefGoogle ScholarPubMed
Hernell, O. & Bläckberg, L. (1994 a). Human milk bile salt stimulated lipase: functional and molecular aspects. Journal of Pediatrics 125 (5) Suppl. S56S61.CrossRefGoogle ScholarPubMed
Hernell, O. & Bläckberg, L. (1994 b). Molecular aspects of fat digestion in the newborn. Acta Paediatrica Suppl. 405, 6569.CrossRefGoogle ScholarPubMed
Hernell, O., Bläckberg, L. & Bernbäck, S. (1988). Digestion and absorption of human milk lipids. In Perinatal Nutrition, pp. 259272 [Lindblad, B. S., editor]. San Diego, CA: Academic Press.Google Scholar
Hernell, O., Bläckberg, L., Chen, Q., Sternby, B. & Nilsson, Å. (1993). Does the bile salt-stimulated lipase of human milk have a role in the use of the milk long chain polyunsaturated fatty acids? Journal of Pediatric Gastroenterology and Nutrition 16, 426431.Google ScholarPubMed
Hodgson, P. A., Ellefson, R. D., Elveback, L. R., Harris, L. E., Nelson, R. A. & Weidman, W. H. (1976). Comparison of serum cholesterol in children fed high, moderate or low cholesterol milk diets during neonatal period. Metabolism 25, 739746.CrossRefGoogle ScholarPubMed
Hunter, J. E., Ip, C. & Hollenbach, E. J. (1985). Isomeric fatty acids and tumorogenesis: a commentary on recent work. Nutrition and Cancer 7, 199209.CrossRefGoogle Scholar
Hytten, F. E. (1954). Clinical and chemical studies in human lactation. II. Variations in major constituents during a feeding. British Medical Journal i, 176179.Google Scholar
Innis, S. M. (1991). Essential fatty acids in growth and development. Progress in Lipid Research 30, 39103.CrossRefGoogle ScholarPubMed
Innis, S. M., Dyer, R. & Nelson, C. M. (1994 a). Evidence that palmitic acid is absorbed as sn-2 monoacylglycerol from human milk by breast-fed infants. Lipids 29, 541545.CrossRefGoogle ScholarPubMed
Innis, S. M., Dyer, R., Quinlan, P. & Diersen-Schade, D. (1995). Palmitic acid is absorbed as sn-2 monopalmitin from milk and formula with rearranged triacylglycerols and results in increased plasma triglyceride sn-2 and cholesteryl ester palmitate in piglets. Journal of Nutrition 125, 7381.Google ScholarPubMed
Innis, S. M., Dyer, R., Quinlan, P. T. & Diersen-Schade, D. (1996). Dietary triacylglyceroi structure and saturated fat alter plasma and tissue fatty acids in piglets. Lipids 31, 497505.CrossRefGoogle ScholarPubMed
Innis, S. M., Foote, K. D., MacKinnon, M. J. & King, D. J. (1990). Plasma and red blood cell fatty acids of low-bidh-weight infants fed their mother's expressed breast milk or preterm-infant formula. American Journal of Clinical Nutrition 51, 9941000.CrossRefGoogle ScholarPubMed
Innis, S. M. & Kuhnlein, H. V. (1988). Long chain n-3 fatty acids in breast milk of Inuit women consuming traditional foods. Early Human Development 18, 185189.CrossRefGoogle ScholarPubMed
Innis, S. M., Nelson, C. M., Rioux, M. F. & King, D. J. (1994 b). Development of visual acuity in relation to plasma and erythrocyte ω-6 and ω-3 fatty acids in healthy term gestation infants. American Journal of Clinical Nutrition 60, 347352.CrossRefGoogle ScholarPubMed
Jensen, R. G. (1989). Lipids in human milk-composition and fat soluble vitamins. In Textbook of Gastroenterology in Infancy, pp. 157208 [Lebenthal, E., editor]. New York: Raven Press.Google Scholar
Jensen, R. G., Ferris, A. M., Lammi-Keefe, C. J. & Henderson, R. A. (1990). Lipids of bovine and human milks: a comparison. Journal of Dairy Science 73, 223240.CrossRefGoogle ScholarPubMed
Jooste, P. L., Rossouw, L. J., Steenkamp, H. J., Rossouw, J. E., Swanepoel, A. S. P. & Chariton, D. O. (1991). Effect of breast feeding on the plasma cholesterol and growth of infants. Journal of Pediatric Gastroenterology and Nutrition 13, 139142Google ScholarPubMed
Jørgensen, M. H., Hernell, O., Lund, P., Hølmer, G. & Michaelsen, K. F. (1996). Visual acuity and erythrocyte docosahexaenoic acid status in breast-fed and formula-fed infants during the first four months of life. Lipids 31, 99105.CrossRefGoogle ScholarPubMed
Kallio, M. J. T., Salmenpera, L., Siimes, M. A., Perheentupa, J. & Miettinen, T. A. (1992). Exclusive breast feeding and weaning: effect on serum cholesterol and lipoprotein concentrations in infants during the first year of life. Pediatrics 89, 663666CrossRefGoogle ScholarPubMed
Katoku, Y., Yamada, M., Yonekubo, A., Kuwata, T., Kobayashi, A. & Sawa, A. (1996). Effect of the cholesterol content of a formula on the lipid compositions of plasma lipoproteins and red blood cell membranes in early infancy. American Journal of Clinical Nutrition 64, 871877.CrossRefGoogle ScholarPubMed
Keys, A., Anderson, J. T. & Grande, F. (1965). Serum cholesterol response to changes in the diet. IV. Particular saturated fatty acids in the diet. Metabolism 14, 776787.CrossRefGoogle ScholarPubMed
Kneebone, G. M., Kneebone, R. & Gibson, R. A. (1985). Fatty acid composition of breast milk from three racial groups from Penang, Malaysia. American Journal of Clinical Nutrition 41. 765769.CrossRefGoogle ScholarPubMed
Koletzko, B. (1992 a). Improved essential fatty acid status of premature infants by dietary supplementation of both ω-6 and ω-3 long chain polyunsaturates. In Recent Advances in Infant Feeding, pp. 2832 [Koletzko, B., et al. , editors]. Stuttgart: Thieme Verlag.Google Scholar
Koletzko, B. (1992 b). Trans fatty acids may impair biosynthesis of long chain polyunsaturates and growth in man. Acta Paediatrica 81, 302306.CrossRefGoogle ScholarPubMed
Koletzko, B. & Bremer, H. J. (1989). Fat content and fatty acid composition of infant formulas. Acta Paediatrica Scandinavica 78, 513516.CrossRefGoogle ScholarPubMed
Koletzko, B., Mrotzek, M. & Bremer, H. J. (1988). Fatty acid composition of mature human milk in Germany. American Journal of Clinical Nutrition 47, 954959.CrossRefGoogle ScholarPubMed
Koletzko, B., Schmidt, E., Bremer, H. J., Haug, M. & Harzer, G. (1989). Effects of dietary long-chain polyunsaturated fatty acids on the essential fatty acid status of premature infants. European Journal of Pediatrics 148, 669675.CrossRefGoogle ScholarPubMed
Koletzko, B., Thiel, I. & Abiodun, P. O. (1992 a). Fatty acid composition of human milk in Europe and Africa. Journal of Pediatrics 120, S87S92.CrossRefGoogle ScholarPubMed
Koletzko, B., Thiel, I. & Springer, S. (1992 b). Lipids in human milk: a model for infant formulae? European Journal of Clinical Nutrition 46 (Suppl. 4.) S45S55.Google Scholar
Kritchevsky, D. (1982). Trans fatty acid effects in experimental atherosclerosis. Federation Proceedings 41, 28132817.Google ScholarPubMed
Kyle, D. J. (1996). Production and use of a single cell oil which is highly enriched in docosahexaenoic acid. Lipid Technology 5, 107110.Google Scholar
Lammi-Keefe, C. J. & Jensen, R. G. (1984). Lipids in human milk: a review. 2. Composition and fat-soluble vitamins. Journal of Pediatric Gastroenterology and Nutrition 3, 172198.Google ScholarPubMed
Law, M. R., Wald, N. J., Wu, T., Hackshaw, A. & Bailey, A. (1994). Systematic underestimation of association between serum cholesterol concentration and ischaemic heart disease in observational studies: data from the BUPA study. British Medical Journal 308, 363366.CrossRefGoogle ScholarPubMed
Lawrence, R. A. (1994). Breastfeeding: a guide for the medical profession. 4th edn. St Louis, MO: Mosby.Google Scholar
Lien, E. L. (1994). The role of fatty acid composition and positional distribution in fat absorption in infants. Journal of Pediatrics 125, S62S68.CrossRefGoogle ScholarPubMed
Lien, E. L., Yuhas, R. J., Boyle, F. G. & Tomarelli, R. M. (1993). Corandomization of fats improves absorption in rats. Journal of Nutrition 123, 18591867.CrossRefGoogle ScholarPubMed
Lin, D. S., Pitkin, R. M. & Connor, W. E. (1977). Placental transfer of cholesterol into the human fetus. American Journal of Obstetrics and Gynecology 128, 735739.CrossRefGoogle ScholarPubMed
Lucas, A., Quinlan, P., Abrams, S., Ryan, S., Meah, S. & Lucas, P. J. (1997). Randomised controlled trial of a synthetic triglyceride milk formula for preterm infants. Archives of Disease in Childhood 77, F178F184.CrossRefGoogle ScholarPubMed
Makrides, M., Neumann, M. A., Byard, R. W., Simmer, K. & Gibson, R. A. (1994). Fatty acid composition of brain, retina, and erythrocytes in breast- and formula-fed infants. American Journal of Clinical Nutrition 60, 189194.CrossRefGoogle ScholarPubMed
Makrides, M., Neumann, M. A. & Gibson, R. A. (1996). Effect of maternal docosahexaenoic acid (DHA) supplementation on breast milk composition. European Journal Clinical Nutrition 50, 352357.Google ScholarPubMed
Makrides, M., Neumann, M., Simmer, K., Pater, J. & Gibson, R. (1995). Are long-chain polyunsaturated fatty acids essential nutrients in infancy? Lancet 345, 14631468.CrossRefGoogle ScholarPubMed
Makrides, M., Simmer, K., Goggin, M. & Gibson, R. A. (1993). Erythrocyte docosahexaenoic acid correlates with the visual response of healthy, term infants. Pediatric Research 33, 425427.Google ScholarPubMed
Martin, J.-C., Bougnoux, P., Antoine, J.-M., Lanson, M. & Couet, C. (1993). Triacylglycerol structure of human colostrum and mature milk. Lipids 28, 637643.CrossRefGoogle ScholarPubMed
Martinez, M. (1991). Developmental profiles of polyunsaturated fatty acids in the brain of normal infants and patients with peroxisomal diseases: severe deficiency of docosahexaenoic acid in Zellweger's and pseudo-Zellweger's syndromes. World Review of Nutrition and Dietetics 66, 87102.CrossRefGoogle ScholarPubMed
Mattson, F. H. & Grundy, S. M. (1985). Comparison of effects of dietary saturated, monounsaturated and polyunsaturated fatty acids on plasma lipids and lipoproteins in man. Journal of Lipid Research 26, 194202.CrossRefGoogle ScholarPubMed
Ministry of Agriculture, Fisheries and Food (1992) Food Advisory Committee Report on the Use of Additives in Foods Specially Prepared for Infants and Young Children. London: HMSO.Google Scholar
Mohrhauer, H. & Holman, R. T. (1963 b). The effect of dietary essential fatty acids upon composition of polyunsaturated fatty acids in depot fat and erythrocytes of the rat. Journal of Lipid Research 4, 346350.CrossRefGoogle ScholarPubMed
Moreau, H., Laugier, R., Gargouri, Y., Ferrato, F. & Verger, R. (1988). Human preducdenal lipase is entirely of gastric fundic origin. Gastroenterology 95, 12211226.CrossRefGoogle ScholarPubMed
Mortimer, B.-C., Kenrick, M. A., Holthouse, D. J., Stick, R. V. & Redgrave, T. G. (1992). Plasma clearance of model lipoproteins containing saturated and polyunsaturated monoacylglycerols injected intravenously in the rat. Biochimica et Biophysica Acta 1127, 6773.CrossRefGoogle ScholarPubMed
Mott, G. E., Jackson, E. M., DeLallo, L., Lewis, D. S. & McMahan, C. A. (1995). Differences in cholesterol metabolism in juvenile baboons are programmed by breast- versus formula-feeding. Journal of Lipid Research 36, 299307.CrossRefGoogle ScholarPubMed
Mott, G. E., Jackson, E. M., McMahan, C. A., Farley, C. M. & McGill, H. C. (1985). Cholesterol metabolism in juvenile baboons. Influence of infant and juvenile diets. Arteriosclerosis 5, 347354.CrossRefGoogle ScholarPubMed
Mott, G. E., McMahan, C. A., Kelley, J. L., Farley, C. M. & McGill, H. C. (1982). Influence of infant and juvenile diets on serum cholesterol, lipoprotein cholesterol, and apolipoprotein concentrations in juvenile baboons (Papio sp). Atherosclerosis 45, 191202.CrossRefGoogle ScholarPubMed
Neuringer, M., Connor, W. E., Lin, D. S., Barstad, L. & Luck, S. (1986). Biochemical and functional effects of prenatal and postnatal ω3 fatty acid deficiency on retina and brain in rhesus monkeys. Proceedings of the National Academy of Sciences of the USA 83, 40214025.CrossRefGoogle Scholar
Neville, M. C. (1989). Regulation of milk fat synthesis. Journal of Pediatric Gastroenterology and Nutrition 8, 426429.Google ScholarPubMed
Newman, W. P., Freedman, D. S., Voors, A. W., Gard, P. D., Srinivasan, S. R., Cresanta, J. L., Williamson, G. D., Webber, L. S. & Berenson, G. S. (1986). Relation of serum lipoprotein levels and systolic blood pressure to early atherosclerosis; the Bogalusa heart study. New England Journal of Medicine 314, 138144.CrossRefGoogle ScholarPubMed
Newman, W. P., Wattigney, W. & Berenson, G. S. (1991). Autopsy studies in US children and adolescents. Relationship of risk factors to atherosclerotic lesions. Annals of New York Academy of Sciences 623, 1625.CrossRefGoogle Scholar
Nichols, B. L. & Nichols, V. N. (1983). Nutritional physiology in pregnancy and lactation. Advances in Pediatrics 473515CrossRefGoogle ScholarPubMed
Nilsson, J., Blackberg, L., Carlsson, P., Enerbäck, S., Hernell, O. & Bjursell, G. (1990). cDNA cloning of human-milk bile-salt-stimulated lipase and evidence for its identity to pancreatic carboxylic ester hydrolase. European Journal Biochemistry 192, 543550.CrossRefGoogle ScholarPubMed
Pitkäen, A. S. L., Halonen, T. O., Kilpeläinen, H. O. & Riekkinen, P. J. (1986). Cholesterol esterase activity in cerebrospinal fluid of multiple sclerosis patients. Journal of Neurological Sciences 74, 4553.CrossRefGoogle Scholar
Pitkin, R. M., Connor, W. E. & Lin, D. S. (1972). Cholesterol metabolism and placental transfer in the pregnant rhesus monkey. Journal of Clinical Investigation 51, 25842592.CrossRefGoogle ScholarPubMed
Prentice, M., Landing, M. A., Drury, P. J., Dewit, O. & Crawford, M. A. (1989). Breast milk fatty acids of rural Gambian mothers: effects of diet and maternal parity. Journal of Pediatric Gastroenterology and Nutrition 8, 486489.Google ScholarPubMed
Putnam, J. C., Carlson, S. E., de Voe, P. & Barness, L. A. (1982). The effect of variations in dietary fatty acids on the fatty acid composition of erythrocyte Phosphatidylethanolamine in human infants. American Journal of Clinical Nutrition 36, 106114.CrossRefGoogle ScholarPubMed
Quinlan, P. T., Lockton, S., Irwin, J. & Lucas, A. L. (1995). The relationship between stool hardness and stool composition in breast- and formula fed infants. Journal of Pediatric and Gastroenterology and Nutrition 20, 8190.Google ScholarPubMed
Rassin, D. K., Raiha, N. C. R., Minoli, I. & Moro, G. (1990). Taurine and cholesterol supplementation in the term infant: response of growth and metabolism. Journal of Parenteral and Enteral Nutrition 14, 392397.CrossRefGoogle ScholarPubMed
Read, W. W. C. & Sarrif, A. (1965). Human milk lipids. I. Changes in fatty acid composition of early colostrum. American Journal of Clinical Nutrition 17, 177179.CrossRefGoogle ScholarPubMed
Redgrave, T. G., Kodali, D. R. & Small, D. M. (1988). The effect of triacyl-sn-glycerol structure on the metabolism of chylomicrons and triacylglycerol-rich emulsions in the rat. Journal of Biological Chemistry 263, 51185123.CrossRefGoogle Scholar
Reiser, R., O'Brien, B. C., Henderson, G. R. & Moore, R. W. (1979). Studies on a possible function for cholesterol in milk. Nutrition Reports International 19, 835849.Google Scholar
Reiser, R. & Sidelman, Z. (1972). Control of serum cholesterol homeostasis by cholesterol in the milk of the suckling rat. Journal of Nutrition 102, 10091016.CrossRefGoogle ScholarPubMed
Rose, D., Slater, A. & Perry, H. (1986). Prediction of childhood intelligence from habituation in early infancy. Intelligence 10, 251263.CrossRefGoogle Scholar
Rüegg, M. & Blanc, B. (1978). Structure and properties of the particular constituents of human milk: a review. Food Microstructure 1, 2547.Google Scholar
Rüegg, M. & Blanc, B. (1981). The fat globule size distribution in human milk. Biochimica et Biophysica Acta 666, 714.CrossRefGoogle ScholarPubMed
Sammons, H. G. & Wiggs, S. M. (1960). The separation, estimation and analysis of calcium soaps in human faeces. Clinica Chimica Acta 5, 141145.CrossRefGoogle ScholarPubMed
Sanders, T. A. B. (1988). Essential and trans-fatty acids in nutrition. Nutrition Research Reviews 1, 5778.CrossRefGoogle ScholarPubMed
Sanders, T. A. B. & Reddy, S. (1992). The influence of a vegetarian diet on the fatty acid composition of human milk and the essential fatty acid status of the infant. Journal of Pediatrics 120 (4), Suppl. S71S77.CrossRefGoogle ScholarPubMed
Scow, R. O. & Chernick, S. S. (1987). Role of lipoprotein lipase during lactation. In Lipoprotein lipase, pp. 149185 [Borensztain, J.. editor]. Chicago, IL: Evener.Google Scholar
Shepherd, J., Packard, C. J., Grundy, S. M., Yeshurun, D., Gotto, A. M. & Taunton, O. D. (1980). Effects of saturated and polyunsaturated fat diets on the chemical composition and metabolism of low density lipoproteins in man. Journal of Lipid Research 21, 9199.CrossRefGoogle ScholarPubMed
Small, D. M. (1991). The effects of glyceride structure on absorption and metabolism. Annual Review of Nutrition 11, 413434.CrossRefGoogle ScholarPubMed
Spady, D.K. & Dietschy, J. (1985). Dietary saturated triacylglycerols suppress hepatic low density lipoprotein receptor activity in the hamster. Proceedings of the National Academy of Sciences of the USA 82, 45264530.CrossRefGoogle ScholarPubMed
Stary, H. C. (1989). Evolution and progression of atherosclerotic lesions in coronary arteries of children and young adults. Arteriosclerosis 9, 119132.Google ScholarPubMed
Statutory Instruments (1995). The Infant Formula and Follow-on Formula Regulations. London: HMSO.Google Scholar
Statutory Instruments (1997). The Infant Formula and Follow-on Formula (Amendment) Regulations. London: HMSO.Google Scholar
Strong, J. P., Malcolm, G. T., Newman, W. P. & Oalmann, M. C. (1992). Early lesions of atherosclerosis in childhood and youth: natural history and risk factors. Journal of the American College of Nutrition 11 (Suppl.), 51S54S.CrossRefGoogle ScholarPubMed
Svennerholm, L. (1968). Distribution and fatty acid composition of phosphoglycerides in normal human brain. Journal of Lipid Research 9, 570579.CrossRefGoogle ScholarPubMed
Thompson, B. J. & Smith, S. (1985). Biosynthesis of fatty acids by lactating human breast epithelial cells: an evaluation of the contribution to the overall composition of human milk fat. Pediatric Research 19, 139143.CrossRefGoogle Scholar
Uauy, R. D., Birch, D. G., Birch, E. E., Hoffman, D. R. & Tyson, J. E. (1993). Visual and brain development in infants as a function of essential fatty acid supply provided by early diet. In Lipids, Learning and the Brain: fats in infant formulas (Report of the 103rd Ross Conference on Pediatric Research), pp. 215230.Google Scholar
Uauy, R. D., Birch, D. G., Birch, E. E., Tyson, J. E. & Hoffman, D. R. (1990). Effect of dietary omega-3 fatty acids on retinal function of very-low-birth-weight neonates. Pediatric Research 28, 485492.CrossRefGoogle ScholarPubMed
Van Beusekom, C. M., Nijeboer, H. J., van der Veere, C. N., Luteyn, A. J., Offringa, P. J., Muskiet, F. A. J. & Boersma, E. R. (1993). Indicators of long chain polyunsaturated fatty acid status of exclusively breastfed infants at delivery and after 20–22 days. Early Human Development 32, 207218.CrossRefGoogle ScholarPubMed
Van Biervliet, J.-P., Vinaimont, N., Vercaemst, R. & Rosseneu, M. (1992). Serum cholesterol, cholesteryl ester, and high density lipoprotein development in newborn infants: response to formulas supplemeneted with cholesterol and γ linolenic acid. Journal of Pediatrics 120(4), Suppl. S101S108.CrossRefGoogle ScholarPubMed
Voss, A., Reinhart, M., Sankarappa, S. & Sprecher, S. (1991). The metabolism of 7, 10, 13, 16, 19-docosapentaenoic acid to 4,7,10,13,16,19-docosahexaenoic acid in rat liver is independent of a 4-desaturase. Journal of Biological Chemistry 226, 1999520000.CrossRefGoogle Scholar
Wagner, V. & von Stockhausen, H. B. (1988). The effect of feeding human milk and adapted milk formulae on serum lipid and lipoprotein levels in young infants. European Journal of Pediatrics 147, 292295.CrossRefGoogle ScholarPubMed
Watkins, J. B., Bliss, C. M., Donaldson, R. M. & Lester, R. (1974). Characterization of newborn fecal lipid. Pediatrics 53, 511515.CrossRefGoogle ScholarPubMed
Weisinger, H. S., Vingrys, A. J. & Sinclair, A. J. (1996). The effect of docosahexaenoic acid on the electroretinogram of the guinea pig. Lipids 31, 6570.CrossRefGoogle ScholarPubMed
Wells, J. C. K. (1996). Nutritional considerations in infant formula design. Seminars in Neonatology 1, 1926.CrossRefGoogle Scholar
Wiedmann, T. S., Pates, R. D., Beach, J. M., Salmon, A. & Brown, M. F. (1988). Lipid-protein interactions mediate the photochemical function of rhodopsin. Biochemistry 27, 64696474.CrossRefGoogle ScholarPubMed
Willatts, P., Forsyth, J. S., DiMondugno, M. K., Varma, S. & Colvin, M. (1998). Effect of long-chain polyunsaturated fatty acids in infant formula on problem solving at 10 months of age. Lancet 352, 688691.CrossRefGoogle ScholarPubMed
Winter, C. H., Hoving, E. B. & Muskiet, F. A. J. (1993). Fatty acid composition of human milk triglyceride species. Possible consequences for optimal structures of infant formula triglycerides. Journal of Chromatography 616, 924.CrossRefGoogle ScholarPubMed
Witting, L. A., Harvey, C. C., Century, B. & Horwitt, M. K. (1961). Dietary alterations of fatty acids of erythrocytes and mitochondria of brain and liver. Journal of Lipid Research 2, 412418.CrossRefGoogle Scholar
Wong, W. W., Hachey, D. L., Insull, W., Opekun, A. R. & Klein, P. D. (1993). Effect of dietary cholesterol on cholesterol synthesis in breast-fed and formula-fed infants. Journal of Lipid Research 34, 14031411.CrossRefGoogle ScholarPubMed
Zilversmit, D. B. & Hughes, L. B. (1974). Validation of a dual-isotope plasma ratio method for measurement of cholesterol absorption in rats. Journal of Lipid Research 15, 465473.CrossRefGoogle ScholarPubMed