Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-29T05:39:14.200Z Has data issue: false hasContentIssue false

Nutrition and Whole-Body Protein Turnover in the Chicken in Relation to Mammalian Species

Published online by Cambridge University Press:  14 December 2007

Tatsuo Muramatsu
Affiliation:
Laboratory of Animal Nutrition, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya 464-01, Japan
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © The Nutrition Society 1990

References

REFERENCES

Adibi, S. A., Stanko, R. T. & Morse, E. L. (1982). Modulation of leucine oxidation and turnover by graded amounts of carbohydrate intake in obese subjects. Metabolism 31, 578588.CrossRefGoogle ScholarPubMed
Aguilar, T. S., Harper, A. E. & Benevenga, N. J. (1972). Efficiency of utilization of indispensable amino acids for growth by the rat. Journal of Nutrition 102, 11991208.CrossRefGoogle ScholarPubMed
Allison, J. B., Anderson, J. A. & Seeley, R. D. (1947). Some effects of methionine on the utilization of nitrogen in the adult dog. Journal of Nutrition 33, 361370.CrossRefGoogle ScholarPubMed
Aoyagi, Y., Muramatsu, T. & Okumura, J. (1989). Contribution of whole-body protein synthesis to diet-induced thermogenesis in refed chicks. Nutrition Research (In the Press.)Google Scholar
Bressani, R., Braham, J. E., Elias, L. G. & Balconi, R. (1965). Urinary nitrogen and sulfur excretion in dogs under different dietary treatments. Journal of Nutrition 87, 7784.CrossRefGoogle ScholarPubMed
Chua, B., Siehl, D. L. & Morgan, H. E. (1979). Effect of leucine and metabolites of branched chain amino acids on protein turnover in heart. Journal of Biological Chemistry 254, 83588362.CrossRefGoogle ScholarPubMed
Conway, J. M., Bier, D. M., Motil, K. J., Burke, J. F. & Young, V. R. (1980). Whole-body lysine flux in young adult men: effects of reduced total protein and of lysine intake. American Journal of Physiology 239, E192E200.Google ScholarPubMed
Deeley, R. G., Gordon, J. I., Burns, A. T. H., Mullinix, K. P., Binastein, M. & Goldberger, R. F. (1977). Primary activation of the vitellogenin gene in the rooster. Journal of Biological Chemistry 252, 83108319.CrossRefGoogle ScholarPubMed
Eisemann, J. H., Hammond, A. C., Bauman, D. E., Reynolds, P. J., McCutcheon, S. N., Tyrrell, H. F. & Haaland, G. L. (1986). Effect of bovine growth hormone administration on metabolism of growing Hereford heifers: protein and lipid metabolism and plasma concentrations of metabolites and hormones. Journal of Nutrition 116, 25042515.CrossRefGoogle ScholarPubMed
Freeman, B. M. (1971). Metabolic energy and gaseous metabolism. In Physiology and Biochemistry of the Domestic Fowl, vol. 1, pp. 279293 [Bell, D. J. and Freeman, B. M., editors]. London: Academic Press.Google Scholar
Fuller, M. F., Reeds, P. J., Cadenhead, A., Seve, B. & Preston, T. (1987). Effects of the amount and quality of dietary protein on nitrogen metabolism and protein turnover of pigs. British Journal of Nutrition 58, 287300.CrossRefGoogle ScholarPubMed
Garlick, P. J., Clugston, G. A. & Waterlow, J. C. (1980 a). Influence of low-energy diets on whole-body protein turnover in obese subjects. American Journal of Physiology 238, E235E244.Google ScholarPubMed
Garlick, P. J. & Grant, I. (1988). Amino acid infusion increases the sensitivity of muscle protein synthesis in vivo to insulin. Effect of branched-chain amino acids. Biochemical Journal 254, 579584.CrossRefGoogle ScholarPubMed
Garlick, P. J., McNurlan, M. A. & McHardy, K. C. (1988). Factors controlling the deposition of primary nutrients. Proceedings of the Nutrition Society 47, 169176.CrossRefGoogle Scholar
Garlick, P. J., McNurlan, M. A. & Preedy, V. R. (1980 b). A rapid and convenient technique for measuring the rate of protein synthesis in tissues by injection of [3H]phenylalanine. Biochemical Journal 192, 719723.CrossRefGoogle ScholarPubMed
Garlick, P. J., Preedy, V. R. & Reeds, P. J. (1985). Regulation of protein turnover in vivo by insulin and amino acids. In Intracellular Protein Catabolism, pp. 555564 [Edward, K. A., Bond, J. S. and Bird, J. W. C., editors]. New York: Alan R. Liss, Inc.Google Scholar
Gersovitz, M., Bier, D., Matthews, D., Udall, J., Munro, H. N. & Young, V. R. (1980). Dynamic aspects of whole body glycine metabolisminfluence of protein intake in young adult and elderly males. Metabolism 29, 10871094.CrossRefGoogle ScholarPubMed
Harmon, C. S., Proud, C. G. & Pain, V. M. (1984). Effects of starvation, diabetes and acute insulin treatment on the regulation of polypeptide-chain initiation in rat skeletal muscle. Biochemical Journal 223, 687696.CrossRefGoogle ScholarPubMed
Hiramoto, K., Muramatsu, T. & Okumura, J. (1989). Underestimation of protein synthesis caused by using DL-isomer of [15N]methionine in laying hens. Nutrition Reports International 39, 635642.Google Scholar
Hiramoto, K., Muramatsu, T. & Okumura, J. (1990). Effect of methionine and lysine deficiencies on protein synthesis in the liver and oviduct and in the whole body of laying hens. Poultry Science 69, 8489.CrossRefGoogle ScholarPubMed
Hoffer, L. J., Bistrian, B. R., Young, V. R., Blackburn, G. L. & Matthews, D. E. (1984). Metabolic effects of very low calorie weight reduction diets. Journal of Clinical Investigation 73, 750758.CrossRefGoogle ScholarPubMed
Hoffer, L. J., Yang, R. D., Matthews, D. E., Bistrian, B. R., Bier, D. M. & Young, V. R. (1985). Effects of meal consumption on whole body leucine and alanine kinetics in young adult men. British Journal of Nutrition 53, 3138.CrossRefGoogle ScholarPubMed
Jansen, G. R. & Hunsaker, H. (1986). Effect of dietary protein and energy on protein synthesis during lactation in rats. Journal Nutrition 116, 957968.CrossRefGoogle ScholarPubMed
Jepson, M. M., Bates, P. C., Broadbent, P., Pell, J. M. & Millward, D. J. (1988 a). Relationship between glutamine concentration and protein synthesis in rat skeletal muscle. American Journal of Physiology 255, E166E172.Google ScholarPubMed
Jepson, M. M., Bates, P. C. & Millward, D. J. (1988 b). The role of insulin and thyroid hormones in the regulation of muscle growth and protein turnover in response to dietary protein in the rat. British Journal of Nutrition 59, 397415.Google ScholarPubMed
Kino, K. & Okumura, J. (1987 a). Whole-body protein turnover in chicks fed control, histidine, or methionine plus cystine-free diets. Poultry Science 66, 13921397.CrossRefGoogle ScholarPubMed
Kino, K. & Okumura, J. (1987 b). The different degradation rates of deficient amino acids in chicks fed a histidineor methionine plus cystine-free diet. Nutrition Reports International 36, 781790.Google Scholar
Kita, K., Muramatsu, T. & Okumura, J. (1989 a). Influence of excess protein intake on whole-body protein synthesis in chicks. Nutrition Reports International 39, 10911097.Google Scholar
Kita, K., Muramatsu, T., Tasaki, I. & Okumura, J. (1989 b). Influence of dietary non-protein energy intake on whole-body protein turnover in chicks. British Journal of Nutrition 61, 235244.CrossRefGoogle ScholarPubMed
Laurent, B. C., Moldawer, L. L., Young, V. R., Bistrian, B. R. & Blackburn, G. L. (1984). Whole-body leucine and muscle protein kinetics in rats fed varying protein intakes. American Journal of Physiology 246, E444E451.Google ScholarPubMed
Laurent, G. J., Sparrow, M. P., Bates, P. C., Millward, D. J. & Garlick, P. J. (1978). Turnover of muscle protein in the fowl (Gallus domesticus). Rates of protein synthesis in fast and slow skeletal, cardiac and smooth muscle of the adult fowl. Biochemical Journal 176, 393405.CrossRefGoogle ScholarPubMed
Li, J. B. & Wassner, S. J. (1984). Effects of food deprivation and refeeding on total protein and actomyosin degradation. American Journal of Physiology 246, E32E37.Google ScholarPubMed
Lobley, G. E., Connell, A. & Buchan, V. (1987). Effect of food intake on protein and energy metabolism in finishing beef steers. British Journal of Nutrition 57, 457465.CrossRefGoogle ScholarPubMed
Lobley, G. E., Milne, V., Lovie, J. M., Reeds, P. J. & Pennie, K. (1980). Whole body and tissue protein synthesis in cattle. British Journal of Nutrition 43, 491502.CrossRefGoogle ScholarPubMed
Lubaszewska, S., Pastuszewska, B. & Kielanowski, J. (1973). The effect of methionine supplementation of a protein-free diet on the nitrogen excretion in rats and pigs. Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 31, 120128.CrossRefGoogle ScholarPubMed
McKnight, G. S. & Palmiter, R. D. (1979). Transcriptional regulation of the ovalubumin and conalbumin genes by steroid hormones in chick oviduct. Journal of Biological Chemistry 254, 90509058.CrossRefGoogle Scholar
McNurlan, M. A. & Garlick, P. J. (1980). Contribution of rat liver and gastrointestinal tract to whole-body protein synthesis in the rat. Biochemical Journal 186, 381383.CrossRefGoogle ScholarPubMed
McNurlan, M. A., Tomkins, A. M. & Garlick, P. J. (1979). The effect of starvation on the rate of protein synthesis in rat liver and small intestine. Biochemical Journal 178, 373379.CrossRefGoogle ScholarPubMed
Meguid, M. M., Matthews, D. E., Bier, D. M., Meredith, C. N., Soeldner, J. S. & Young, V. R. (1986 a). Leucine kinetics at graded leucine intakes in young men. American Journal of Clinical Nutrition 43, 770780.CrossRefGoogle ScholarPubMed
Meguid, M. M., Matthews, D. E., Bier, D. M., Meredith, C. N. & Young, V. R. (1986 b). Valine kinetics at graded valine intakes in young men. American Journal of Clinical Nutrition 43, 781786.CrossRefGoogle ScholarPubMed
Melville, S., McNurlan, M. A., McHardy, K. C., Broom, J., Milne, E., Calder, A. G. & Garlick, P. J. (1989). The role of degradation in the acute control of protein balance in adult man: failure of feeding to stimulate protein synthesis as assessed by L-[1-13C]leucine infusion. Metabolism 38, 248255.CrossRefGoogle Scholar
Mercer, L. P. (1982). The quantitative nutrient-response relationship. Journal of Nutrition 112, 560566.CrossRefGoogle ScholarPubMed
Meredith, C., Bier, D. M., Meguid, M. M., Matthews, D. E., Wen, Z. & Young, V. R. (1982). Whole body amino acid turnover with 13C tracers: a new approach for estimation of human amino acid requirements. In Clinical Nutrition '81, pp. 4259 [Wesdorp, R. I. C. and Soeters, P. B., editors]. London: Churchill Livingstone.Google Scholar
Meredith, C. N., Wen, Z.-M., Bier, D. M., Matthews, D. E. & Young, V. R. (1986). Lysine kinetics at graded lysine intakes in young men. American Journal of Clinical Nutrition 43, 787794.CrossRefGoogle ScholarPubMed
Millward, D. J. (1989). The endocrine response to dietary protein: the anabolic drive on growth. In Milk Proteins, pp. 4961 [Barth, C. A. and Schlimme, E., editors]. Darmstadt: Steinkopf Verlag.CrossRefGoogle Scholar
Millward, D. J., Bates, P. C., de Benoist, B., Brown, J. G., Cox, M., Halliday, D., Odedra, B. & Rennie, M. J. (1983). Protein turnover: the nature of the phenomenon and its physiological regulation. In Protein Metabolism and Nutrition, 4th International Symposium, vol. 1, pp. 6996. Paris: Institut National de la Recherche Agronomique.Google Scholar
Millward, D. J., Brown, J. G. & van Bueren, J. (1988). The influence of plasma concentrations of triiodothyronine on the acute increases in insulin and muscle protein synthesis in the refed fasted rat. Journal of Endocrinology 118, 417422.CrossRefGoogle ScholarPubMed
Millward, D. J. & Rivers, J. (1988). The nutritional role of indispensable amino acids and the metabolic basis for their requirements. European Journal of Clinical Nutrition 42, 367393.Google ScholarPubMed
Millward, D. J. & Rivers, J. P. W. (1989). The need for indispensable amino acids: the concept of the anabolic drive. Diabetes Metabolism Reviews 5, 191212.CrossRefGoogle ScholarPubMed
Mitchell, H. H. (1959). Some species and age differences in amino acid requirements. In Protein and Amino Acid Nutrition, pp. 1143 [Albanese, A. A., editors]. New York: Academic Press.Google Scholar
Motil, K. J., Bier, D. M., Matthews, D. E., Burke, J. F. & Young, V. R. (1981 a). Whole body leucine and lysine metabolism studied with [1-13C]leucine and [α-15N]lysine: response in healthy young men given excess energy intake. Metabolism 30, 783791.CrossRefGoogle ScholarPubMed
Motil, K. J., Matthews, D. E., Bier, D. M., Burke, J. F., Munro, H. N. & Young, V. R. (1981 b). Whole-body leucine and lysine metabolism: response to dietary protein intake in young men. American Journal of Physiology 240, E712E721.Google ScholarPubMed
Muramatsu, T., Aoyagi, Y., Okumura, J. & Tasaki, I. (1987 a). Contribution of whole-body protein synthesis to basal metabolism in layer and broiler chickens. British Journal of Nutrition 57, 269277.CrossRefGoogle ScholarPubMed
Muramatsu, T., Coates, M. E., Hewitt, D., Salter, D. N. & Garlick, P. J. (1983). The influence of the gut microflora on protein synthesis in liver and jejunal mucosa in chicks. British Journal of Nutrition 49, 453462.CrossRefGoogle ScholarPubMed
Muramatsu, T., Hatano, T., Ueda, Y., Furuse, M. & Okumura, J. (1989). Effect of rumen-protected methionine on whole-body protein synthesis in goats. Asian-Australasian Journal of Animal Science 2, 247248.CrossRefGoogle Scholar
Muramatsu, T., Hiramoto, K., Tasaki, I. & Okumura, J. (1987 b). Whole-body protein turnover in laying hens with special reference to protein depletion and repletion. Nutrition Reports International 35, 607614.Google Scholar
Muramatsu, T., Hiramoto, K., Tasaki, I. & Okumura, J. (1987 c). Effect of protein starvation on protein turnover in liver, oviduct and whole body of laying hens. Comparative Biochemistry and Physiology 87B, 227232.Google Scholar
Muramatsu, T., Kato, M., Tasaki, I. & Okumura, J. (1986). Enhanced whole-body protein synthesis by methionine and arginine supplementation in protein-starved chicks. British Journal of Nutrition 55, 635641.CrossRefGoogle ScholarPubMed
Muramatsu, T., Kita, K., Tasaki, I. & Okumura, J. (1987 d). Influence of dietary protein intake on whole-body protein turnover in chicks. British Poultry Science 28, 471482.CrossRefGoogle ScholarPubMed
Muramatsu, T., Kita, K., Tasaki, I. & Okumura, J. (1988 a). Whole-body protein synthesis in chicks with special reference to dietary protein requirement. Japanese Journal of Zootechnical Science 59, 568571.Google Scholar
Muramatsu, T., Nagai, N., Kino, K., Okumura, J. & Tasaki, I. (1985 a). Whole-body protein synthesis and amino acid metabolism in genetically obese and proteinuric mice. Nutrition Reports International 32, 13711377.Google Scholar
Muramatsu, T. & Okumura, J. (1979 a). Nitrogen sparing action of dietary methionine and arginine in chicks fed a protein-free diet. Nutrition Reports International 19, 335342.Google Scholar
Muramatsu, T. & Okumura, J. (1979 b). Effect of dietary methionine and arginine on uric acid excretion of cocks fed a protein-free diet. Journal of Nutrition 109, 10571062.CrossRefGoogle ScholarPubMed
Muramatsu, T. & Okumura, J. (1980 a). Influence of dietary energy on the nitrogen sparing action of methionine and arginine in chicks fed a protein-free diet. Journal of Nutrition 110, 5965.CrossRefGoogle ScholarPubMed
Muramatsu, T. & Okumura, J. (1980 b). The nitrogen-sparing effect of methionine in chicks receiving a protein-free diet supplemented with arginine: effect of various methionine substituents. British Poultry Science 21, 273280.CrossRefGoogle ScholarPubMed
Muramatsu, T. & Okumura, J. (1985). Whole-body protein turnover in chicks at early stages of growth. Journal of Nutrition 115, 483490.CrossRefGoogle ScholarPubMed
Muramatsu, T., Salter, D. N. & Coates, M. E. (1985 b). Protein turnover of breast muscle in germ-free and conventional chicks. British Journal of Nutrition 54, 131145.CrossRefGoogle ScholarPubMed
Muramatsu, T., Ueda, Y., Hirata, T., Okumura, J. & Tasaki, I. (1988 b). A note on the effect of ageing on whole-body protein turn-over in goats. Animal Production 46, 479481.CrossRefGoogle Scholar
Muramatsu, T., Wakayama, E., Kato, M., Tasaki, I. & Okumura, J. (1984). The relationship between non-protein sulfhydryl compounds and the nitrogen-sparing action of amino acid supplements in protein-starved chicks. Japanese Journal of Zootechnical Science 55, 682693.Google Scholar
Nair, K. S., Welle, S. L., Halliday, D. & Campbell, R. G. (1988). Effect of β-hydroxybutyrate on whole-body leucine kinetics and fractional mixed skeletal muscle protein synthesis in humans. Journal of Clinical Investigation 82, 198205.CrossRefGoogle ScholarPubMed
National Research Council (1978). Nutrient Requirements of Laboratory Animals, 3rd revised ed., Washington, DC: National Academy of Sciences.Google Scholar
National Research Council (1984). Nutrient Requirements of Poultry, 8th revised ed., Washington, DC: National Academy Press.Google Scholar
Neale, R. J. & Waterlow, J. C. (1983). Rate of endogenous methionine oxidation in rats at different levels of methionine intake. British Journal of Nutrition 50, 157162.CrossRefGoogle ScholarPubMed
Pacy, P. J., Garrow, J. S., Ford, G. C., Merritt, H. & Halliday, D. (1988). Influence of amino acid administration on whole-body leucine kinetics and resting metabolic rate in postabsorptive normal subjects. Clinical Science 75, 225231.CrossRefGoogle ScholarPubMed
Rabolli, D. & Martin, R. J. (1977). Effects of diet composition on serum levels of insulin, thyroxine, triiodothyronine, growth hormone, and corticosterone in rats. Journal of Nutrition 107, 10681074.CrossRefGoogle ScholarPubMed
Reeds, P. J., Cadenhead, A., Fuller, M. F., Lobley, G. E. & McDonald, J. D. (1980). Protein turnover in growing pigs. Effects of age and food intake. British Journal of Nutrition 43, 445455.CrossRefGoogle ScholarPubMed
Reeds, P. J. & Fuller, M. F. (1983). Nutrient intake and protein turnover. Proceedings of Nutrition Society 42, 463471.CrossRefGoogle ScholarPubMed
Reeds, P. J., Fuller, M. F., Cadenhead, A., Lobley, G. E. & McDonald, J. D. (1981). Effects of changes in the intakes of protein and non-protein energy on whole-body protein turnover in growing pigs. British Journal of Nutrition 45, 539546.CrossRefGoogle ScholarPubMed
Reeds, P. J. & Lobley, G. E. (1980). Protein synthesis: are there real species differences? Proceedings of Nutrition Society 39, 4352.CrossRefGoogle ScholarPubMed
Sampson, D. A., Hunsaker, H. A. & Jansen, G. R. (1986). Dietary protein quality, protein quantity and food intake: effects on loctation and on protein synthesis and tissue composition in mammary tissue and liver in rats. Journal of Nutrition 116, 365375.CrossRefGoogle Scholar
Sampson, D. A. & Jansen, G. R. (1984). Protein synthesis during lactation: no circadian variation in mammary gland and liver of rats fed diets varying in protein quality and level of intake. Journal of Nutrition 114, 14701478.CrossRefGoogle ScholarPubMed
Sampson, D. A. & Jansen, G. R. (1985). The effect of dietary protein quality and feeding level on milk secretion and mammary protein synthesis in the rat. Journal of Pediatric Gastroenterology and Nutrition 4, 274283.Google ScholarPubMed
Sanders, M. M. & McKnight, G. S. (1985). Chicken egg white genes: multihormonal regulation in a primary cell culture system. Endocrinology 116, 398405.CrossRefGoogle Scholar
Schimke, R. T. (1970). Regulation of protein degradation in mammalian tissues. In Mammalian Protein Metabolism, vol. 4, pp. 177228 [Munro, H. N., editors]. New York: Academic Press.CrossRefGoogle Scholar
Schoenheimer, R. (1942). The Dynamic State of Body Constituents, pp. 378 (Clarke, Revs H. T., Rittenberg, D. and Ratner, S., editors) Cambridge, MA: Harvard University Press.Google Scholar
Scott, M. L., Nesheim, M. C. & Young, R. J. (1982). Nutrition of the Chicken 3rd ed., pp. 58118. Ithaca, New York: M. L. Scott and Associates.Google Scholar
Smith, R. H. (1980). Comparative amino acid requirements. Proceedings of Nutrition Society 39, 7178.CrossRefGoogle ScholarPubMed
Waterlow, J. C., Garlick, P. J. & Millward, D. J. (1978). Protein Turnover in Mammalian Tissues and in the Whole Body, pp. 117176, 371401, 443479. Amsterdam: North-Holland Publishing Co.Google Scholar
Webster, A. J. F. (1981). The energetic efficiency of metabolism. Proceedings of Nutrition Society 40, 121128.CrossRefGoogle ScholarPubMed
Webster, A. J. F. (1983). Energetics of maintenance and growth. In Mammalian Thermogenesis, pp. 178207 [Girardier, L. and Stock, M. J., editors]. London: Chapman and Hall.CrossRefGoogle Scholar
Winterer, J., Bistrian, B. R., Bilmazes, C., Blackburn, G. L. & Young, V. R. (1980). Whole-body protein turnover, studied with 15N-glycine and muscle protein breakdown in mildly obese subjects during a protein-sparing diet and a brief total fast. Metabolism 29, 575581.CrossRefGoogle Scholar
Yang, R. D., Matthews, D. E., Bier, D. M., Wen, Z. M. & Young, V. R. (1986). Response of alanine metabolism in humans to manipulation of dietary protein and energy intakes. American Journal of Physiology 250, E39E46.Google ScholarPubMed
Yokogoshi, H. & Yoshida, A. (1979). Effect of supplementation of methionine and threonine on hepatic polyribosome profile in rats meal-fed a protein-free diet. Journal of Nutrition 109 148154.CrossRefGoogle ScholarPubMed
Yoshida, A. & Moritoki, K. (1974). Nitrogen sparing action of methionine and threonine in rats receiving a protein free diet. Nutrition Reports International 9, 159168.Google Scholar
Young, V. R., Cucalp, C., Rand, W. M., Matthews, D. E. & Bier, D. M. (1987). Leucine kinetics during three weeks at submaintenance-to-maintenance intakes of leucine in man: adaptation and accommodation. Human Nutrition: Clinical Nutrition 41C, 118.Google Scholar
Zak, R., Martin, A. F. & Blough, R. (1979). Assessment of protein turnover by use of radioisotopic tracers. Physiological Reviews, 59, 407447.CrossRefGoogle ScholarPubMed