Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-01T06:07:00.107Z Has data issue: false hasContentIssue false

Early life history of Nautilus: evidence from isotopic analyses of aquarium-reared specimens

Published online by Cambridge University Press:  08 February 2016

Neil H. Landman
Affiliation:
Department of Invertebrates, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024-5192
J. Kirk Cochran
Affiliation:
Marine Sciences Research Center, State University of New York, Stony Brook, New York 11794-5000
Danny M. Rye
Affiliation:
Department of Geology and Geophysics, Yale University, Post Office Box 6666, New Haven, Connecticut 06511
Kazushige Tanabe
Affiliation:
Geological Institute, University of Tokyo, Tokyo 113, Japan
John M. Arnold
Affiliation:
Pacific Biomedical Research Center, University of Hawaii, Honolulu, Hawaii 96822, and Marine Biological Laboratory, Woods Hole, Massachusetts 02543

Abstract

Specimens of Nautilus species caught in the wild show a marked increase in oxygen isotopic composition between embryonic and postembryonic septa. The significance of this increase in terms of the early life history of Nautilus has been unclear. To help explain this pattern, we analyzed the isotopic composition of the septa of three specimens of Nautilus belauensis raised in aquariums under controlled temperature conditions. Our results indicate that both embryonic and postembryonic septa are secreted with the same temperature-dependent fractionation of aragonite relative to water as that of other aragonite-secreting molluscs (Grossman and Ku 1986). The δ18O values of the septa thus provide a reliable means of determining the water temperature in which the septa form. Calculated temperatures based on oxygen isotopic data from specimens caught in the wild reveal that embryonic development occurs at 22°-24° corresponding to a depth of 100-200 m depending on the location. The increase in δ18O in postembryonic septa reflects a migration into colder, deeper water after hatching. In Cretaceous nautilids, a systematic shift in δ18O is not present, indicating that these animals probably did not change their habitat after hatching. This is consistent with the likelihood that they lived in shallower environments than that of modern Nautilus.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Arnold, J. M. 1987. Reproduction and embryology of Nautilus. Pp. 353372in Saunders and Landman 1987.Google Scholar
Arnold, J. M., and Carlson, B. A. 1986. Living Nautilus embryos: preliminary observations. Science 232:7376.CrossRefGoogle ScholarPubMed
Arnold, J. M., Landman, N. H., and Mutvei, H. 1987. Development of the embryonic shell of Nautilus. Pp. 373400in Saunders, and Landman, 1987.Google Scholar
Bigeleisen, J., and Mayer, M. G. 1947. Calculation of equilibrium constants for isotopic exchange reactions. Journal of Chemical Physics 15:261267.CrossRefGoogle Scholar
Boletzky, S. V. 1987. Embryonic phase. Pp. 531in Boyle, P. R., ed. Cephalopod life cycles. Vol. II. Academic Press, London.Google Scholar
Carlson, B. A. 1987. Collection and aquarium maintenance of Nautilus. Pp. 563578in Saunders and Landman 1987.Google Scholar
Carlson, B. A. 1991. Nautilus hatches at Waikiki Aquarium. Chambered Nautilus Newsletter 63:23.Google Scholar
Carlson, B. A., McKibben, J. N., and DeGruy, M. V. 1984. Telemetric investigation of vertical migration of Nautilus belauensis in Palau (Western Caroline Islands, Pacific Ocean). Pacific Science 38:183188.Google Scholar
Carlson, B. A., Awai, M., and Arnold, J. 1992. Waikiki Aquarium's chambered nautilus reach their first “hatch-day” anniversary. Hawaiian Shell News 40:1, 3-4.Google Scholar
Chamberlain, J. A. Jr. 1978. Permeability of the siphuncular tube of Nautilus: its ecologic and paleoecologic implications. Neues Jahrbuch für Geologie und Paläontologie, Monatscheft 1978:129142.Google Scholar
Cochran, J. K., Rye, D. M., and Landman, N. H. 1981. Growth rate and habitat of Nautilus pompilius inferred from radioactive and stable isotope studies. Paleobiology 7:469480.CrossRefGoogle Scholar
Craig, H. 1961. Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science 133:18331834.CrossRefGoogle ScholarPubMed
Crocker, K. C., DeNiro, M. J., and Ward, P. D. 1985. Stable isotopic investigations of early development in extant and fossil chambered cephalopods. I. Oxygen isotopic composition of eggwater and carbon isotopic composition of siphuncle organic matter in Nautilus. Geochimica et Cosmochimica Acta 49:25272532.CrossRefGoogle Scholar
Davis, R. A., and Mohorter, W. 1973. Juvenile Nautilus from the Fiji Islands. Journal of Paleontology 47:925928.Google Scholar
Eichler, R., and Ristedt, H. 1966a. Isotopic evidence on the early life history of Nautilus pompilius (Linné). Science 153:734736.CrossRefGoogle ScholarPubMed
Eichler, R., and Ristedt, H. 1966b. Untersuchungen zur Frühontogenie von Nautilus pompilius (Linné). Paläontologisches Zeitschrift 40:173191.CrossRefGoogle Scholar
Epstein, S., and Mayeda, T. 1953. Variations in 18O content of waters from natural sources. Geochimica et Cosmochimica Acta 27:213224.CrossRefGoogle Scholar
Friedman, I., and O'Neil, J. R. 1977. Compilation of stable isotope fractionation factors of geochemical interest. Pp. 112in Fleischer, M., ed. Data of geochemistry, 6th ed. U.S. Geological Survey Professional Paper 440 KK.CrossRefGoogle Scholar
Grossman, E., and Ku, T. 1986. Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chemical Geology (Isotope Geoscience Section) 59:5974.CrossRefGoogle Scholar
Hewitt, R. A. 1988. Significance of early septal ontogeny in ammonoids and other ectocochliates. Pp. 207214in Wiedmann, J. and Kullmann, J., eds. Cephalopods—present and past. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart.Google Scholar
Hewitt, R. A. 1989. Outline of research on the ecology and evolution of the Eocence nautilid cephalopods from the London Clay, England. Tertiary Research 10:6581.Google Scholar
Hewitt, R. A., and Westermann, G. E. G. 1987. Nautilus shell architecture. Pp. 435462in Saunders, and Landman, Landman, 1987.Google Scholar
Hewitt, R. A., and Westermann, G. E. G. 1990. Nautilus shell strength variance as an indicator of habitat depth limits. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 179:7195.Google Scholar
Landman, N. H. 1988. Early ontogeny of Mesozoic ammonites and nautilids. Pp. 215228in Wiedmann, J. and Kullmann, J., eds. Cephalopods—present and past. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart.Google Scholar
Landman, N. H., Rye, D. M., and Shelton, K. L. 1983. Early ontogeny of Eutrephoceras compared to Recent Nautilus and Mesozoic ammonites; evidence from shell morphology and light stable isotopes. Paleobiology 9:269279.CrossRefGoogle Scholar
McCrea, J. M. 1950. On the isotope chemistry of carbonates and a paleotemperature scale. Journal of Chemical Physics 18:849857.CrossRefGoogle Scholar
Oba, T., and Tanabe, K. 1983. Oxygen isotope analysis of the shells of Nautilus pompilius. Kagoshima University Research Center for the South Pacific, Occasional Papers 1:2629.Google Scholar
Oba, T., Kai, M., and Tanabe, K. 1992. Early life history and habitat of Nautilus pompilius inferred from oxygen isotope examinations. Marine Biology 113:211217.CrossRefGoogle Scholar
Okubo, S. 1989. Hatching of Nautilus belauensis in the aquarium. Aquabiology 11:191. [In Japanese].Google Scholar
Rye, D. M., and Sommer, M. A. II. 1980. Reconstructing paleotemperature and paleosalinity regimes with oxygen isotopes. Pp. 169202in Rhoads, D. C. and Lutz, R. A., eds. Skeletal growth of aquatic organisms. Plenum, New York.CrossRefGoogle Scholar
Saunders, W. B., and Landman, N. H., eds. 1987. Nautilus: the biology and paleobiology of a living fossil. Plenum, New York.CrossRefGoogle Scholar
Saunders, W. B., and Ward, P. D. 1987. Ecology, distribution, and population characteristics of Nautilus. Pp. 137162in Saunders and Landman 1987.Google Scholar
Stenzel, H. B. 1964. Living Nautilus. Pp. K59K93in Moore, R. C., ed. Treatise on invertebrate paleontology. Part K (Mollusca 3). Geological Society of America and University of Kansas Press, Lawrence, Kansas.Google Scholar
Tanabe, K., Tsukahara, J., Fukuda, Y., and Taya, Y. 1991. Histology of a living Nautilus embryo: preliminary observations. Journal of Cephalopod Biology 2:1322.Google Scholar
Taylor, B. E., and Ward, P. D. 1983. Stable isotopic studies of Nautilus macromphalus Sowerby (New Caledonia) and Nautilus pompilius L. (Fiji). Palaeogeography, Palaeoclimatology, Palaeoecology 41:116.CrossRefGoogle Scholar
Ward, P. D. 1987. The natural history of Nautilus. Allen & Unwin, Boston.Google Scholar
Ward, P. D., and Martin, A. W. 1980. Depth distribution of Nautilus pompilius in Fiji and Nautilus macromphalus in New Caledonia. The Veliger 22:259264.Google Scholar
Ward, P. D., Carlson, B., Weekley, M., and Brumbaugh, B. 1984. Remote telemetry of daily vertical and horizontal movement by Nautilus in Palau. Nature (London) 309:248250.CrossRefGoogle Scholar
Wells, M. J., Wells, J., and O'Dor, R. K. 1992. Life at low oxygen tensions: the behaviour and physiology of Nautilus pompilius and the biology of extinct forms. Journal of the Marine Biological Association of the United Kingdom 72:313328.CrossRefGoogle Scholar
Willey, A. 1902. Contribution to the natural history of the pearly nautilus. Zoological results based on material from New Britain, New Guinea, Loyalty Islands and elsewhere, collected during the years 1895, 1896 and 1897. Cambridge University Press, Cambridge, England. Pp. 691830.CrossRefGoogle Scholar
Wright, E. M. M. K. 1986. Stratification and paleocirculation patterns of the Upper Cretaceous Western Interior Seaway of North America. Ph.D. thesis. Yale University, New Haven, Conn.Google Scholar