Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T00:22:06.070Z Has data issue: false hasContentIssue false

Functional significance of regular archaeocyathan central cavity diameter: a biomechanical and paleoecological test

Published online by Cambridge University Press:  08 February 2016

Michael Savarese*
Affiliation:
Department of Geological Sciences, 1005 East Tenth Street, Indiana University, Bloomington, Indiana 47405

Abstract

Theoretical and experimental biomechanical approaches are used to test the effect regular archaeocyathan central cavity diameter has on the generation of passive flow through the skeleton. These results are then used to predict a correspondence between gross morphology and paleoenvironmental occurrence. Previous work has demonstrated that regular archaeocyathan morphology generates passive flow, via Bernoulli and viscous entrainment effects, through its porous walls for suspension feeding, a phenomenon that occurs in modern sponges. Efficacy of entrainment depends upon the area of the excurrent pore (i.e., central cavity) over which the ambient flow is moving. Consequently, archaeocyaths should have maximized their central cavity diameters.

Five-centimeter-long, conical and cylindrical acrylic pipes with varying end diameters were tested in a flume to document the relative effects of Bernoulli and viscous entrainment. Each pipe was oriented perpendicular to the flow direction in a uniform flow field, and fluorescein dye was injected at the pipe's mid-length for flow visualization. Models with different-sized apertures consistently exhibit dye movement to the larger opening and greater dye entrainment speeds than models with identically sized apertures, thereby suggesting that viscous entrainment effects are significant and operating in concert with Bernoulli effects. To test for similar effects in archaeocyaths, four brass models were constructed with varying central cavity diameters. Both volume flux and excurrent flow speed of the exiting water increased as the central cavity diameter increased. An analysis of the morphologies that occur in nature confirm these results. Regular archaeocyaths most commonly have central cavity diameters close to their outer wall diameter, thereby maximizing the excurrent pore area.

These results have implications for archaeocyathan paleoecology. Environments with low-magnitude currents should support individuals with larger central cavity diameters than higher energy settings. Data on the occurrence of morphotypes within bioherms of varying flow energies from South Australia support this prediction.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alexander, D. E., and Ghiold, J. 1980. The functional significance of the lunules in the sand dollar, Mellita quinquiesperforata. Biological Bulletin 159:561570.CrossRefGoogle Scholar
Balsam, W. L, and Vogel, S. 1973. Water movement in archaeocyathids: evidence and implications of passive flow in models. Journal of Paleontolology 47:979984.Google Scholar
Bengtson, S., Conway Morris, S., Cooper, B. J., Jell, P. A., and Runnegar, B. N. 1990. Early Cambrian fossils from South Australia. Memoir of the Association of Australasian Palaeontologists 9:1364.Google Scholar
Bidder, G. P. 1923. The relation of the form of a sponge to its currents. Quarterly Journal of the Microscopical Science 67:293323.Google Scholar
Debrenne, F. 1974. Anatomie et systématique des Archéocyathes réguliers sans plancher d'Ajax Mine (Cambrien inférieur, Australie du Sud). Geobios 7:91138.CrossRefGoogle Scholar
Debrenne, F. 1987. Archaeocyatha from Mexico in the Smithsonian Institution. New data from recent collections. Geobios 20:267273.CrossRefGoogle Scholar
Debrenne, F. 1991. Extinction of the Archaeocyatha. Historical Biology 5:95106.CrossRefGoogle Scholar
Debrenne, F. 1992. Diversification of Archaeocyatha. Pp. 425443in Lipps, J. H. and Signor, P. W., eds. Origin and early evolution of the Metazoa. Plenum, New YorkCrossRefGoogle Scholar
Debrenne, F., and Debrenne, M. 1978. Archaeocyathid fauna of the lowest fossiliferous levels of Tiout (Lower Cambrian, Southern Morocco). Geological Magazine 115:101119.CrossRefGoogle Scholar
Debrenne, F., and Jiang, Z.-W. 1989. Archaeocyathan fauna from the Lower Cambrian of Yunnan (China). Bulletin Société Géologie de France 4:819828.CrossRefGoogle Scholar
Debrenne, F., and Kruse, P. D. 1986. Shackleton Limestone archaeocyaths. Alcheringa 10:235278.CrossRefGoogle Scholar
Debrenne, F., and Rozanov, A. Y. 1983. Paleogeographic and stratigraphic distribution of regular Archaeocyatha (Lower Cambrian fossils). Geobios 16:727736.CrossRefGoogle Scholar
Debrenne, F., and Vacelet, J. 1984. Archaeocyatha: is the sponge model consistent with their structural organization? Palaeontographica Americana 54:358369.Google Scholar
Debrenne, F., Gandin, A., and Rowland, S. M. 1989. Lower Cambrian bioconstructions in northwestern Mexico (Sonora). Depositional setting, paleoecology and systematics of archaeocyaths. Geobios 22:137195.CrossRefGoogle Scholar
Debrenne, F., Debrenne, M., and Faure-Muret, A. 1990. Faune d'Archéocyathes de l'Anti-Atlas occidental (bordures Nord et Sud) et du Haut Atlas occidental. Cambrien inférieur, Maroc. Géologie Méditerranéenne 17:177211.CrossRefGoogle Scholar
Debrenne, F., Gandin, A., and Gangloff, R. A. 1990. Analyse sédimentologique et paléontologie de calcaires organogènes du Cambrien Inférieur de Battle Mountain. Annales de Paléontologie 76:73119.Google Scholar
Debrenne, F., Rozanov, A., and Zhuravlev, A. 1990. Regular archaeocyaths. Centre National de la Recherche Scientifique, Paris.Google Scholar
Denny, M. W. 1988. Biology and the mechanics of the waveswept environment. Princeton University Press.CrossRefGoogle Scholar
Fisher, D. C. 1985. Evolutionary morphology: beyond the analogous, the anecdotal, and the ad hoc. Paleobiology 11:120138.CrossRefGoogle Scholar
Gould, S. J., and Lewontin, R. C. 1979. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proceedings of the Royal Society of London B 205:581598.Google Scholar
Gould, S. J., and Vrba, E. S. 1982. Exaptation—a missing term in the science of form. Paleobiology 8:415.CrossRefGoogle Scholar
Gravestock, D. I. 1984. Archaeocyatha from lower parts of the Lower Cambrian carbonate sequence in South Australia. Association of Australasian Palaeontologists Memoir 2:1139.Google Scholar
Herring, S. W. 1988. Introduction: how to do functional morphology. American Naturalist 28:189192.Google Scholar
Hickman, C. S. 1988. Analysis of form and function in fossils. American Zoologist 28:775793.CrossRefGoogle Scholar
Hill, D. 1972. Archaeocyatha. Part E in Teichert, C., ed. Treatise on Invertebrate Paleontology, Geological Society of America, Boulder, Colo.and the University of Kansas Press, Lawrence.Google Scholar
James, N. P., and Debrenne, F. 1980. First regular archaeocyaths from the northern Appalachians, Forteau Formation, western Newfoundland. Canadian Journal of Earth Sciences 17:16091615.CrossRefGoogle Scholar
James, N. P., and Gravestock, D. I. 1990. Lower Cambrian shelf and shelf margin buildups, Flinders Ranges, South Australia. Sedimentology 37:455480.CrossRefGoogle Scholar
Kruse, P. D. 1982. Archaeocyathan biostratigraphy of the Gnalta Group at Mount Wright, New South Wales. Palaeontographica, Abteilung A 177:129212.Google Scholar
Kruse, P. D., and West, P. W. 1980. Archaeocyatha of the Amadeus and Georgina Basins. Bureau of Mineral Resources Journal of Australian Geology and Geophysics 5:165181.Google Scholar
Lewontin, R. C. 1978. Adaptation. Scientific American 239:212230.CrossRefGoogle ScholarPubMed
Murdock, G. R., and Vogel, S. 1978. Hydrodynamic induction of water flow in a keyhole limpet (Gastropoda, Fissurellidae). Comparative Biochemistry and Physiology 61A:227231.CrossRefGoogle Scholar
Neter, J., Wasserman, W., and Kutner, M. H. 1985. Applied linear statistical models. Richard D. Irwin, Homewood, Ill.Google Scholar
Okulitch, V. J. 1935. Cyathospongia—a new class of Porifera to include the Archaeocyathinae. Transactions of the Royal Society of Canada, Ser. 3, Sect. 4. 29:75106.Google Scholar
Okulitch, V. J. 1937. Some changes in nomenclature of Archaeocyathi (Cyathospongia). Journal of Paleontology 11:251252.Google Scholar
Okulitch, V. J. 1943. North American Pleospongia. Geological Society of America Special Publication 48:1112.CrossRefGoogle Scholar
Okulitch, V. J. 1946. Intervallum structure of Cambrocyathus amourensis. Journal of Paleontology 20:275276.Google Scholar
Perejón, A. 1975. Nuevas faunas de Arqueociatos del Cambrico Inferior de Sierra Morena. Tecniterrae 8:829.Google Scholar
Perejón, A. 1984. Revisión de la colección de Arqueociatos del Museo del Instituto Geológica y Minero de España. Boletin Geológico y Minero 4:337353.Google Scholar
Perejón, A. 1989. Arqueociatos del Ovetiense en la sección del Arroyo Pedroche. Sierra de Córdoba, España. Boletín de la Real Sociedad Española de Historia Natural 84:143247.Google Scholar
Raup, D. M. 1966. Geometric analysis of shell coiling: general problems. Journal of Paleontology 40:11781190.Google Scholar
Raup, D. M. 1967. Geometric analysis of shell coiling: coiling in ammonoids. Journal of Paleontology 41:4365.Google Scholar
Reiswig, H. M. 1971. In situ pumping activities of tropical Demospongiae. Marine Biology 9:3850.CrossRefGoogle Scholar
Rowland, S. M., and Gangloff, R. A. 1988. Structure and paleoecology of Lower Cambrian reefs. Palaios 3:111135.CrossRefGoogle Scholar
Savarese, M. 1992. Functional analysis of archaeocyathan skeletal morphology and its paleobiological implications. Paleobiology 18:464480.CrossRefGoogle Scholar
Seilacher, A. 1970. Arbeitskonzept zur Konstruktions-morphologie. Lethaia 3:393396.CrossRefGoogle Scholar
Shimeta, J. and Jumars, P. A. 1991. Physical mechanisms and rates of particle capture by suspension feeders. Oceanography and Marine Biology, Annual Review 29:191257.Google Scholar
Signor, P. W. 1982. A critical re-evaluation of the paradigm method of functional inference. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 164:5963.CrossRefGoogle Scholar
Signor, P. W., Savarese, M., and Denny, M. W. 1989. Archaeocyathans as cantilevers: some thoughts on the functional morphology of regular archaeocyathans. Geological Society of America Abstracts with Programs 21(6):A287.Google Scholar
Surge, D. M. and Savarese, M. 1995. Lower Cambrian buildups from high- and low-energy environments, Flinders Ranges South Australia. Geological Society of America Abstracts with Programs 27(3):88.Google Scholar
Telford, M. 1981. A hydrodynamic interpretation of sand dollar morphology. Bulletin of Marine Science 31:605622.Google Scholar
Telford, M. 1983. An experimental analysis of lunule function in the sand dollar Mellita quinquiesperforata. Marine Biology 76:125134.CrossRefGoogle Scholar
Vogel, S. 1974. Current-induced flow through the sponge, Halichondria. Biological Bulletin 147:443456.CrossRefGoogle ScholarPubMed
Vogel, S. 1977a. Flows in organisms induced by movement of the external medium. Pp. 285297in Pedley, T. J., ed. Scale effects in animal locomotion. Academic Press, London.Google Scholar
Vogel, S. 1977b. Current-induced flow through living sponges in nature. Proceedings of the National Academy of Sciences U.S.A. 74:20692071.CrossRefGoogle ScholarPubMed
Vogel, S. 1978a. Organisms that capture currents. Scientific American 239:128139.CrossRefGoogle Scholar
Vogel, S. 1978b. Evidence for one-way valves in the water flow system of sponges. Journal of Experimental Biology 76:137148.CrossRefGoogle Scholar
Vogel, S. 1994. Life in moving fluids. Princeton University Press.Google Scholar
Vogel, S., and LaBarbera, M. 1978. Simple flow tanks for research and teaching. Bioscience 28:638643.CrossRefGoogle Scholar
Vogel, S., Ellington, C. P. Jr., and Kilgore, D. C. Jr. 1973. Windinduced ventilation of the burrow of the prairie dog, Cynomys ludovicianus. Journal of Comparative Physiology 84:114.Google Scholar
Webster, D. B., and Webster, M. 1988. Hypotheses derived from morphological data: when and how they are useful. American Naturalist 28:231236.Google Scholar
Wood, R., Zhuravlev, A. Y., and Debrenne, F. 1992. Functional biology and ecology of Archaeocyatha. Palaios 7:131156.CrossRefGoogle Scholar
Zhuravlev, A. Y. 1985. Recent Archaeocyatha? Pp. 2433in Sokolov, B. S. and Zhuravleva, I. T., eds. Problematiki pozdnego dokembriya i paleozoya. Trudy Instituta Geologii i Geofiziki, Vol. 632. Akademiia Nauk Sovetskikh Sotsialisticheskikh Respublik, Sibirskoe Otdelenie. “Nauka,” Moscow. [In Russian.]Google Scholar
Zhuravlev, A. Y. 1989. Poriferan aspects of archaeocyathan skeletal function. Association of Australasian Palaeontologists Memoir 8:387399.Google Scholar
Zhuravleva, I. T. 1959. On the position of the Archaeocyatha in a phylogenetic system. Paleontologicheskii Zhurnal 4:3040.Google Scholar
Zhuravleva, I. T. 1960. Archaeocyatha from the Siberian Platform. Izdatel'stvo Akademii Nauk Sovetskikh Sotsialisticheskikh Respublik, Moscow. [In Russian.]Google Scholar