Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T22:31:12.800Z Has data issue: false hasContentIssue false

Growth patterns and biological information in fossil fish otoliths

Published online by Cambridge University Press:  08 February 2016

Andrea Woydack
Affiliation:
Universität Leipzig, Institut für Geophysik und Geologie, Talstrasse 35, D-04103 Leipzig, Germany. E-mail: sammlung@rz.uni-leipzig.de
Beatriz Morales-Nin
Affiliation:
Consejo Superior de Investigaciones Cientificas-Universitat Illes Balears, Institut Mediterrani d'Estudis Avançats, Miquel Marques 212, 07190 Esporles, Balears, Spain. E-mail: ieabmn@clust.uib.es

Abstract

Teleost otoliths are located in the membranous labyrinth and are mainly composed of aragonite and a small amount of organic matrix. Their rhythmic growth may provide important data about age, growth, maturity, and life-history events.

This article presents insights into paleoecological and evolutionary details from a study of the otolith microstructure of Trisopterus kasselensis, Trisopterus sculptus, and Pterothrissus umbonatus (Oligo-Miocene, North Sea Basin). Otoliths of Recent Trisopterus minutus were analyzed using the same methods (light and electron microscopy, thin slides) as a basis for comparison with the fossil sample.

Growth structures similar in size and aspect to the seasonal and daily growth increments in living fish indicate both individual age and early life transitions in habitat and life strategy suggesting planktonic larvae and benthic juveniles. The aspect of rhythmic growth patterns is due to lunar periodicity, a common feature in fish otoliths. Moreover, fossil Trisopterus show an phylogenetic increase in otolith—and consequently—somatic growth, indicating a change of life strategy during evolution (Oligocene to Recent).

Thus the internal structure of fossil otoliths allows the determination of growth, age composition, and early life history of fossil fish, as well as their direct comparison with living relatives.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bagenal, T. B., and Tesch, F. W. 1978. Age and growth. Pp. 101136in Bagenal, T., ed. Methods for assessment of fish production in fresh waters. Blackwell Scientific, London.Google Scholar
Beamish, R. J., and McFarlane, G. A. 1983. The forgotten requirement for age validation in fisheries biology. Transactions of American Fisheries Society 112:735743.2.0.CO;2>CrossRefGoogle Scholar
Blacker, R. W. 1974. Recent advances in otolith studies. Pp. 6770in Jones, F. R. Harden, ed. Sea fisheries research. Elek Science, London.Google Scholar
Campana, S. E. 1984. Microstructural growth patterns in the otoliths of larval and juvenile starry flounder, Platichthys stellatus. Canadian Journal of Zoology 62:15071512.CrossRefGoogle Scholar
Campana, S. E. 1990. How reliable are growth back-calculations based on otoliths? Canadian Journal of Fisheries and Aquatic Sciences 47:22192227.CrossRefGoogle Scholar
Campana, S. E., and Neilson, J. D. 1985. Microstructure of fish otoliths. Canadian Journal of Fisheries and Aquatic Sciences 42:10141032.CrossRefGoogle Scholar
Cohen, D. M., et al. 1990. Gadiform fishes of the world (order Gadiformes). An annotated and illustrated catalogue of cods, hakes, grenadiers, and other gadiform fishes known to date. FAO Fisheries Synopsis (125) 10:7780.Google Scholar
Dauvin, J.-C. 1988. Rôle du macrobenthos dans l'alimentation des poissons d'émersaux vivant sur les fonds de sédiments fins de la Manche occidentale. Cahiers de Biologie Marine 29:445467.Google Scholar
Degens, E. T., Deuser, W. G., and Haedrich, R. L. 1969. Molecular structure and composition of fish otoliths. Marine Biology 2:105113.CrossRefGoogle Scholar
Dunkelberger, D. G., Dean, J. M., and Watabe, N. 1980. The ultrastructure of the otolith membrane and otolith in the juvenile mummichog, Fundulus heteroclitus. Journal of Morphology 163:367377.CrossRefGoogle ScholarPubMed
Gaemers, P. A. M. 1984. Taxonomic position of the Cichlidae (Pisces, Perciformes) as demonstrated by the morphology of their otoliths. Netherlands Journal of Zoology 34:566595.CrossRefGoogle Scholar
Gauldie, R. W. 1993. Continuous and discontinuous growth in the otolith of Macruronus novaezelandiae (Merlucciidae: Teleostei). Journal of Morphology 216:271294.CrossRefGoogle ScholarPubMed
Gauldie, R. W., and Nelson, D. G. A. 1990. Otolith growth in fishes. Comparative Biochemistry and Physiology 97:119135.CrossRefGoogle Scholar
Geffen, A., and Nash, R. D. M. 1995. Periodicity of otolith check formation in the juvenile plaice Pleuronectes platessa L. Pp. 6573in Secor, D., Dean, J. M., and Campana, S., eds. Recent developments in fish otolith research. University of South Carolina Press, Columbia.Google Scholar
Giannetti, G., and Gramitto, M. E. 1993. Growth and age determination of poor cod Trisopterus minutus capelanus (Lacepede) (Pisces, Gadidae) in the Central Adriatic Sea by thin sectioned otoliths. Quaderni dell'Istituto Ricerche Pesca Marittima 5:119128. Ancona, Italy.Google Scholar
Gutiérrez, E., and Morales-Nin, B. 1986. Time series analysis of daily growth in Dicentrarchus labrax L. otoliths. Journal of Experimental Marine Biology and Ecology 103:163179.CrossRefGoogle Scholar
Hauke, R., and Strauch, F. (1998). Sauerstoff- und Kohlenstoff-Isotopenverhältnisse oberoligozäner Pectiniden aus dem Nordseebecken. Münstersche Forschungen zur Geologie und Paläontologie 85:231250.Google Scholar
Linkowsky, T. B., and Nolf, D. 1998. Microstructural patterns in fossil otoliths of mesopelagic fishes (family Myctophidae)—a new tool to study Tertiary ichthyocenoses. Second international symposium on fish otolith research and application. Symposium publication, oral presentation 23.Google Scholar
Lombarte, A., and Morales-Nin, B. 1995. Morphology and ultrastructure of saccular otoliths from five species of the genus Coelorhinchus (Gadiformes: Macrouridae) from the Southeast Atlantic. Journal of Morphology 225:114.CrossRefGoogle ScholarPubMed
Lombarte, A. et al. 1991. Taxonomica numerica de Notothenidae en base a la forma de los otolitos. Scientia Marina 55:413418.Google Scholar
Martini, E., and Gaemers, P. A. M. 1986. Quaternary fish otoliths from sites 587 and 594, Southwest Pacific, Deep Sea Drilling Project, LEG 90. In Kenneth, J. P., von der Borch, C. C., et al., eds. Initial Reports of the Deep Sea Drilling Project 90:953–960. U.S. Government Printing Office, Washington, D.C.Google Scholar
Menon, M. D. 1950. Bionomics of the poor-cod (Gadus minutus L.) in the Plymouth area. Journal of the Marine Biological Association of the U.K. 29:185239.CrossRefGoogle Scholar
Morales-Nin, B. 1980. Incrementos de crecimiento diario en las sagittas de Merluccius paradoxus. Investigación Pesquera 44:305312.Google Scholar
Morales-Nin, B. 1986a. Structure and composition of Merluccius capensis otoliths. South African Journal of Marine Science 4:310.CrossRefGoogle Scholar
Morales-Nin, B. 1986b. Chemical composition of the sea bass (Dicentrarchus labrax, Pisces: Serranidae) otoliths. Cybium 10:115120.Google Scholar
Morales-Nin, B. 1987. Ultrastructure of the organic and inorganic constituents of the otoliths of the sea bass. Pp. 331343in Summerfelt, R. C. and Hall, G. E., eds. Age and growth of fish. Iowa State University Press, Ames.Google Scholar
Morales-Nin, B. 1988. Age determination in a tropical fish, Lethrinus nebulosus (Forskal, 1775) (Teleostei: Lethrinidae) by means of otolith interpretation. Investigación Pesquera 52:237244.Google Scholar
Morales-Nin, B. 1992. Determination of growth in bony fishes from otolith microstructure. FAO Fisheries Technical Paper 322.Google Scholar
Morales-Nin, B. 1998. Mediterranean deep-water fish age determination and age validation: the state of the art. ICES CM 1998/O:8. Theme session (O) deepwater fish and fisheries.Google Scholar
Morales-Nin, B. 2000. Review of the growth regulation processes of otolith daily increment formation. Fisheries Research 46(1–3):5367.CrossRefGoogle Scholar
Nolf, D. 1985. Otolithi piscium. Pp. 1145in Schultze, H. P., ed. Handbook of paleoichthyology, Vol. 10. Gustav Fischer, Stuttgart.Google Scholar
Nolf, D. 1995. Studies on fossil otoliths-the state of the art. Pp. 513544in Secor, D., Dean, J. M., and Campana, S., eds. Recent developments in fish otolith research. University of South Carolina Press, Columbia.Google Scholar
Nolf, D., and Steurbaut, E. 1989. Evidence from otoliths for establishing relationships within gadiforms. In Cohen, D. M., ed. Papers on the systematics of gadiform fishes. Natural History Museum of Los Angeles County, Science Series 32:89111.Google Scholar
Pannella, G. 1971. Fish otoliths: daily growth layers and periodical patterns. Science 173:11241127.CrossRefGoogle Scholar
Patterson, W. P. 1998. North American continental seasonality during the last millennium: high-resolution analysis of sagittal otoliths. Palaeogeography, Palaeoclimatology, Palaeoecology 138:271303.CrossRefGoogle Scholar
Platt, C., and Popper, A. N. 1981. Fine structure and function of the ear. Pp. 336in Tavolga, W. N., Popper, A. N., and Fay, R. N., eds. Hearing and communication in fishes. Springer, New York.CrossRefGoogle Scholar
Politou, C.-Y., and Papaconstantinou, C. 1991. Population biology of Trisopterus minutus capelanus (Gadidae) from the eastern coast of Greece. Cybium 15:6981.Google Scholar
Popper, A. N., and Hoxter, B. 1981. Growth of a fish ear. 1. Quantitative analysis of hair cells and ganglion cell proliferation. Hearing Research 15:133142.CrossRefGoogle Scholar
Schwarzhans, W. 1980. Die tertiäre Teleosteer-Fauna Neuseelands, rekonstruiert anhand von Otolithen. Berliner Geowissenschaftliche, Abhandlungen A 26:1211.Google Scholar
Secor, D. H., Dean, J. M., and Laban, E. H. 1992. Otolith removal and preparation for microstructural examination. In Stevenson, D. K. and Campana, S. E., eds. Otolith microstructure examination and analysis. Canadian Special Publication of Fisheries and Aquatic Sciences 117:1957.Google Scholar
Watabe, N., et al. 1982. Scanning electron microscope observations of the organic matrix in the otolith of the teleost fish Fundulus heteroclitus and Tilapia nilotica. Journal of Experimental Marine Biology and Ecology 58:127134.CrossRefGoogle Scholar
Williams, T., and Bedford, B. C. 1974. The use of otoliths for age determination. Pp. 114123in Bagenal, T. B., ed. The ageing of fish. Proceedings of an international symposium, Unwin Brothers, Old Working Surrey, England.Google Scholar
Wilson, R. R. 1988. Analysis of growth zones and microstructure in otoliths of two macrourids from the North Pacific abyss. Environmental Biology of Fishes 21:251261; Hague.CrossRefGoogle Scholar
Zhang, Y. 1992. Relationship of saccular ultrastructure to otolith growth in the teleost Oreochromis niloticus. Journal of Morphology 211:110.CrossRefGoogle Scholar