Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T05:38:15.988Z Has data issue: false hasContentIssue false

Assessing the robustness of disparity estimates: the impact of morphometric scheme, temporal scale, and taxonomic level in spatangoid echinoids

Published online by Cambridge University Press:  08 April 2016

Loïc Villier
Affiliation:
Institut für Paläontologie, Museum für Naturkunde der Humboldt Universität zu Berlin, Invalidenstrasse 43, D-10115 Berlin, Germany
Gunther J. Eble
Affiliation:
Interdisciplinary Centre for Bioinformatics, Universität Leipzig, Kreuzstrasse 7b, D-04103 Leipzig, Germany

Abstract

The quantification of disparity is an important aspect of recent macroevolutionary studies, and it is usually motivated by theoretical considerations about the pace of innovation and the filling of morphospace. In practice, varying protocols of data collection and analysis have rendered comparisons among studies difficult. The basic question remains, How sensitive is any given disparity signal to different aspects of sampling and data analysis? Here we explore this issue in the context of the radiation of the echinoid order Spatangoida during the Cretaceous. We compare patterns at the genus and species levels, with time subdivision into subepochs and into stages, and with morphological sampling based on landmarks, traditional morphometrics, and discrete characters. In terms of temporal scale, similarity of disparity pattern accrues despite a change in temporal resolution, and a general deceleration in morphological diversification is apparent. Different morphometric methods also produce similar signals. Both the landmark analysis and the discrete character analysis suggest relatively high early disparity, whereas the analysis based on traditional morphometrics records a much lower value. This difference appears to reflect primarily the measurement of different aspects of overall morphology. Disparity patterns are similar at both the genus and species levels. Moreover, inclusion or exclusion of the sister order Holasteroida and the stem group Disasteroida in the sampled morphospace did not affect proportional changes in spatangoid disparity. Similar results were found for spatangoid subclades vis-à-vis spatangoids as a whole. The relative robustness of these patterns implies that the choice of temporal scale, morphometric scheme, and taxonomic level may not affect broad trends in disparity and the representation of large-scale morphospace structure.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ciampaglio, C. N., Kemp, M., and McShea, D. W. 2001. Detecting changes in morphospace occupation patterns in the fossil record: characterization and analysis of measures of disparity. Paleobiology 27:695715.Google Scholar
Morris, S. Conway 1998. The crucible of creation. Oxford University Press, New York.Google Scholar
Dommergues, J.-L., Laurin, B., and Meister, C. 1996. Evolution of ammonoid morphospace during the Early Jurassic radiation. Paleobiology 22:219240.Google Scholar
Donovan, S. K., and Veale, C. 1996. The irregular echinoids Echinoneus Leske and Brissus Gray in the Cenozoic of the Antillean region. Journal of Paleontology 70:632640.Google Scholar
Eble, G. J. 1998a. The role of development in evolutionary radiations. Pp. 132161in McKinney, M. L. and Drake, J. A., eds. Biodiversity dynamics: turnover of populations, taxa, and communities. Columbia University Press, New York.Google Scholar
Eble, G. J. 1998b. Diversification of disasteroids, holasteroids and spatangoids in the Mesozoic. Pp. 629638in Mooi, R. and Telford, M., eds. Echinoderms: San Francisco, Balkema, Rotterdam.Google Scholar
Eble, G. J. 2000a. Contrasting evolutionary flexibility in sister groups: disparity and diversity in Mesozoic atelostomate echinoids. Paleobiology 26:5679.Google Scholar
Eble, G. J. 2000b. Theoretical morphology: state of the art. Paleobiology 26:520528.Google Scholar
Eble, G. J. 2003. Developmental morphospaces and evolution. Pp. 3565in Crutchfield, J. P. and Schuster, P., eds. Evolutionary dynamics: exploring the interplay of selection, accident, neutrality, and function. Oxford University Press, Oxford.Google Scholar
Foote, M. 1990. Nearest-neighbor analysis of trilobite morphospace. Systematic Zoology 34:371382.Google Scholar
Foote, M. 1991. Morphological and taxonomic diversity in a clade's history: the blastoid record and stochastic simulations. Contributions from the Museum of Paleontology, University of Michigan 2:101140.Google Scholar
Foote, M. 1992. Rarefaction analysis of morphological and taxonomic diversity. Paleobiology 18:116.Google Scholar
Foote, M. 1993. Discordance and concordance between morphological and taxonomic diversity. Paleobiology 19:185204.Google Scholar
Foote, M. 1994a. Morphology of Ordovician-Devonian crinoids. Contributions from the Museum of Paleontology, University of Michigan 29:139.Google Scholar
Foote, M. 1994b. Morphological disparity in Ordovician-Devonian crinoids and the early saturation of morphological space. Paleobiology 20:320344.Google Scholar
Foote, M. 1995. Morphology of Carboniferous and Permian crinoids. Contributions from the Museum of Paleontology, University of Michigan 29:135184.Google Scholar
Foote, M. 1996. Ecological controls on the evolutionary recovery of post-Paleozoic crinoids. Science 274:14921495.Google Scholar
Foote, M. 1997. The evolution of morphological diversity. Annual Review of Ecology and Systematics 28:129152.Google Scholar
Foote, M. 1999. Morphological diversity in the evolutionary radiation of the Paleozoic and post-Paleozoic crinoids. Paleobiology Memoirs No. 1. Paleobiology 25(Suppl. to No. 2).Google Scholar
Gould, S. J. 1991. The disparity of the Burgess Shale arthropod fauna and the limits of the cladistic analysis: why we must strive to quantify morphospace. Paleobiology 17:411423.Google Scholar
Gradstein, F. M., Agterberg, F. P., Ogg, J. G., Hardenbol, J., Van Veen, P., Thierry, J., and Huang, Z. 1995. A Triassic, Jurassic and Cretaceous time scale. In Befggren, W. A., Kent, D. V., Aubry, M. P., and Hardenbol, J., eds. Geochronology time scales and global stratigraphic correlation. SEPM Special Publication 54:95126.Google Scholar
Jernvall, J., Hunter, J. P., and Fortelius, M. 1996. Molar tooth diversity, disparity, and ecology in Cenozoic ungulate radiation. Science 274:14891492.Google Scholar
Kanazawa, K. 1992. Adaptation of test shape for burrowing and locomotion in spatangoid echinoids. Palaeontology 35:733750.Google Scholar
Lupia, R. 1999. Discordant morphological disparity and taxonomic diversity during the Cretaceous angiosperm radiation: North American pollen record. Paleobiology 25:128.Google Scholar
McGhee, G. R. 1999. Theoretical morphology: the concept and its applications. Columbia University Press, New York.Google Scholar
McNamara, K. J. 1987. Taxonomy, evolution and functional morphology of southern Australian Tertiary hemiasterid echinoids. Palaeontology 30:4448.Google Scholar
Neige, P., Marchand, D., and Bonnot, A. 1997. Ammonoid morphological signal versus sea-level changes. Gelogical Magazine 134:261264.Google Scholar
Neige, P., Elmi, S., and Rulleau, L. 2001. Existe-t-il une crise au passage Lias-Dogger chez les ammonites? Approche morphométrique par quantification de la disparité morphologique. Bulletin de la Société Géologique de France 172:257264.Google Scholar
Néraudeau, D., and Floquet, M. 1991. Les échinides Hemiasteridae: marqueurs écologiques de la plate-forme castillane et navarro-cantabre (Espagne) au Crétacé supérieur. Palaeogeography, Palaeoclimatology, Palaeoecology 88:265281.Google Scholar
Raup, D. M., and Boyajian, G. E. 1988. Patterns of generic extinction in the fossil record. Paleobiology 14:109125.Google Scholar
Roy, K., and Foote, M. 1997. Morphological approaches to measuring biodiversity. Trends in Ecology and Evolution 12:277281.Google Scholar
Smith, A. B. 1984. Echinoid paleobiology. Allen and Unwin, London.Google Scholar
Smith, A. B. 1994. Systematics and the fossil record: documenting evolutionary patterns. Blackwell Scientific, Oxford.Google Scholar
Smith, L. H., and Lieberman, B. S. 1999. Disparity and constraint in olenelloid trilobites and the Cambrian radiation. Paleobiology 25:459470.Google Scholar
Van Valen, L. 1974. Multivariate structural statistics in Natural History. Journal of Theoretical Biology 45:235247.CrossRefGoogle ScholarPubMed
Villier, L. 2001. Evolution du genre Heteraster dans le contexte de la radiation de l'ordre des Spatangoida (Echinoidea, Echinodermata) au Crétacé inférieur. Thèse de doctorat, Université de Bourgogne.Google Scholar
Villier, L., Néraudeau, D., Clavel, B., Neumann, C., and David, B. 2004. Phylogeny of Early Cretaceous Spatangoids (Echinoidea: Echinodermata) and taxonomic implications. Palaeontology 47:265292.Google Scholar
Wagner, P. J. 1995. Testing evolutionary constraint hypotheses with early Paleozoic gastropods. Paleobiology 21:248272.Google Scholar
Wagner, P. J. 1997. Patterns of morphological diversification among the Rostroconchia. Paleobiology 23:115150.Google Scholar
Wills, M. A. 1998a. Cambrian and recent disparity: picture from priapulids. Paleobiology 24:177199.Google Scholar
Wills, M. A. 1998b. Rare 1.1. Rarefaction of morphological disparity indices. Basic code for Chipmunk Basic, University of Bristol.Google Scholar
Wills, M. A., Briggs, D. E., and Fortey, R. A. 1994. Disparity as an evolutionary index: a comparison of Cambrian and Recent arthropods. Paleobiology 20:93130.Google Scholar
Zaghbib-Turki, D. 1989. Les échinides indicateurs des paléoenvironnements: un exemple dans le Cénomanien de Tunisie. Annales de Paléontologie 75:6381.Google Scholar