Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T12:48:15.983Z Has data issue: false hasContentIssue false

The evolution of long bone microstructure and lifestyle in lissamphibians

Published online by Cambridge University Press:  08 April 2016

Michel Laurin
Affiliation:
FRE CNRS 2696, Case 7077, Université Paris 7—Denis Diderot, 2, place Jussieu, F-75251 Paris Cedex 05 France. E-mail: laurin@ccr.jussieu.fr and loth@ccr.jussieu.fr and loth@ccr.jussieu.fr
Marc Girondot
Affiliation:
Laboratoire Ecologie, Systématique et Evolution, Equipe de Conservation des Populations et des Communautés, CNRS et Université Paris-Sud, Paris XI, UMR 8079, Bâtiment 362, 91405 Orsay Cedex, France. E-mail: marc.girondot@ese.u-psud.fr
Marie-Madeleine Loth
Affiliation:
FRE CNRS 2696, Case 7077, Université Paris 7—Denis Diderot, 2, place Jussieu, F-75251 Paris Cedex 05 France. E-mail: laurin@ccr.jussieu.fr and loth@ccr.jussieu.fr and loth@ccr.jussieu.fr

Abstract

The compactness profile of femoral cross-sections and body size of 105 specimens of 46 species of lissamphibians was studied to assess the effect of lifestyle (aquatic, amphibious, or terrestrial). Several tests that incorporate phylogenetic information (permutational multiple linear regression incorporating phylogenetic distances, logistic regression using phylogenetic weighting, concentrated-changes tests) show that the return to a fully aquatic lifestyle is associated with an increase in the compactness of the femur and an increase in body size. However, amphibious taxa cannot be distinguished from terrestrial ones solely on the basis of size or compactness. Body size and compactness profile parameters of the femur exhibit a phylogenetic signal (i.e., closely related taxa tend to be more similar to each other than to distantly related taxa).

Mathematical equations obtained from our data by using logistic regression with phylogenetic weighting are used to infer the lifestyle of four early stegocephalians. The results are generally congruent with prevailing paleontological interpretations, which suggests that this method could be applied to infer the lifestyle of early taxa whose lifestyle is poorly understood.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Akaike, H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19:716723.Google Scholar
Andrews, S. M., and Carroll, R. L. 1991. The order Adelospondyli: Carboniferous lepospondyl amphibians. Transactions of the Royal Society of Edinburgh 82:239275.Google Scholar
Báez, A. M. 1981. Redescription and relationships of Saltenia ibanezi, a late Cretaceous pipid frog from Northwestern Argentina. Ameghiniana 22:127154.Google Scholar
Baez, A. M., and Pugener, L. A. 2003. Ontogeny of a new Palaeogene pipid frog from southern South America and xenopodimorph evolution. Zoological Journal of the Linnean Society 139:439476.Google Scholar
Báez, A. M., and Rage, J.-C. 1998. Pipid frogs from the Upper Cretaceous of In Beceten, Niger. Palaeontology 41:669691.Google Scholar
Báez, A. M., Trueb, L., and Calvo, J. O. 2000. The earliest known pipoid frog from South America: a new genus from the middle Cretaceous of Argentina. Journal of Vertebrate Paleontology 20:490500.Google Scholar
Berman, D. S., Reisz, R. R., and Eberth, D. A. 1985. Ecolsonia cutlerensis, an early Permian dissorophid amphibian from the Cutler Formation of north-central New Mexico. Circular of the New Mexico Bureau of Mines and Mineral Resources 191:131.Google Scholar
Bininda-Edmonds, O. R. P., Gittleman, J. L., and Kelly, C. K. 2001. Flippers versus feet: comparative trends in aquatic and non-aquatic carnivores. Journal of Animal Ecology 70:386400.Google Scholar
Bolt, J. R. 1969. Lissamphibian origins: possible protolissamphibian from the Lower Permian of Oklahoma. Science 166:888891.Google Scholar
Bolt, J. R. 1977. Dissorophoid relationships and ontogeny, and the origin of the Lissamphibia. Journal of Paleontology 51:235249.Google Scholar
Bolt, J. R. 1979. Amphibamus grandiceps as a juvenile dissorophid: evidence and implications. Pp. 529563in Nitecki, M. H., ed. Mazon Creek fossils. Academic Press, London.CrossRefGoogle Scholar
Bossy, K. V. H. 1976. Morphology, paleoecology, and evolutionary relationships of the Pennsylvanian urocordylid nectrideans (subclass Lepospondyli, class Amphibia). Ph.D. dissertation. Yale University, New Haven, Conn.Google Scholar
Buffrénil, V. de, and Mazin, J.-M. 1990. Bone histology of the ichthyosaurs: comparative data and functional interpretation. Paleobiology 16:435447.Google Scholar
Buffrénil, V. de, and Mazin, J.-M. 1992. Contribution de l'histologie osseuse à l'interprétation paléobiologique du genre Placodus Agassiz, 1833 (Reptilia, Placodontia). Revue de Paléobiologie 11:397407.Google Scholar
Buffrénil, V. de, and Mazin, J.-M. 1993. Some aspects of skeletal growth in Triassic and post-Triassic ichthyosaurs as revealed by bone histology. Pp. 6368in Pinna, G. and Mazin, J.-M., eds. Evolution, ecology and biogeography of the Triassic reptiles. Paleontologia Lombarda della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano, nuova serie, Milan.Google Scholar
Buffrénil, V. de, and Rage, J.-C. 1993. La “pachyostose” vertébrale de Simoliophis (Reptilia, Squamata): données comparatives et considérations fonctionnelles. Annales de Paléontologie 79:415–335.Google Scholar
Buffrénil, V. de, and Schoevaert, D. 1988. On how the periosteal bone of the delphinid humerus becomes cancellous: ontogeny of a histological specialization. Journal of Morphology 198:149164.Google Scholar
Buffrénil, V. de, and Schoevaert, D. 1989. Données quantitatives et observations histologiques sur la pachyostose du squelette du dugong, Dugong dugon (Müller) (Sirenia, Dugongidae). Canadian Journal of Zoology 67:21072119.CrossRefGoogle Scholar
Buffrénil, V. de, Mazin, J. M., and A. de Ricqlèes. 1987. Caractères structuraux et mode de croissance du fémur d'Omphalosaurus nisseri, ichthyosaurien du Trias Moyen de Spitsberg. Annales de Paléontologie 73:195216.Google Scholar
Buffrénil, V. de, de Ricqlès, A., Sigogneau-Russell, D., and Buffetaut, E. 1990. L'histologie osseuse des champsosauridés: données descriptives et interprétation fonctionnelle. Annales de Paléontologie 76:255275.Google Scholar
Bystrow, A. P. 1944. Kotlassia prima Amalitzky. Geological Society of America Bulletin 55:379416.Google Scholar
Carroll, R. L. 1964. Early evolution of the dissorophid amphibians. Bulletin of the Museum of Comparative Zoology 131:161250.Google Scholar
Carroll, R. L. 1985. Evolutionary constraints in aquatic diapsid reptiles. Palaeontology 33:145155.Google Scholar
Carroll, R. L. 1988. Vertebrate paleontology and evolution. W. H. Freeman, New York.Google Scholar
Carroll, R. L., and Gaskill, P. 1978. The order Microsauria. American Philosophical Society, Philadelphia.Google Scholar
Castanet, J., and Caetano, M. H. 1995. Influence du mode de vie sur les caractéristiques pondérales et structurales du squelette chez les amphibiens anoures. Canadian Journal of Zoology 73:234242.Google Scholar
Castanet, J., Rogers, K. Curry, Cubo, J., and Boisard, J.-J. 2000. Periosteal bone growth rates in extant ratites (ostriche and emu): implications for assessing growth in dinosaurs. Comptes Rendus de l'Académie des Sciences de Paris, Sciences de la vie/Life Sciences 323:543550.Google ScholarPubMed
Castanet, J., Cubo, J., and de Margerie, E. 2001. Signification de l'histodiversité osseuse: le message de l'os. Biosystema 19:133147.Google Scholar
Coates, M. I., and Clack, J. A. 1991. Fish-like gills and breathing in the earliest known tetrapod. Nature 352:234236.Google Scholar
Dubois, A. 1992. Notes sur la classification des Ranidae (amphibiens anoures). Bulletin Mensuel de la Société Linnéenne de Lyon 61:305352.Google Scholar
Dubois, A., and Ohler, A. 1994. Frogs of the subgenus Pelophylax (Amphibia, Anura, genus Rana): a catalogue of available and valid scientific names, with comments on name-bearing types, complete synonymies, proposed common names, and maps showing all type localities. Zoologica Poloniae 39:139204.Google Scholar
Duellman, W. E., and Trueb, L. 1986. Biology of amphibians. McGraw-Hill, New York.Google Scholar
Estes, R. 1969. The fossil record of amphiumid salamanders. Breviora 322:111.Google Scholar
Fawcett, D. W. 1942. The amedullary bones of the Florida manatee (Trichechus latirostris). American Journal of Anatomy 71:271309.Google Scholar
Fish, F. E., and Stein, B. R. 1991. Functional correlates of differences in bone density among terrestrial and aquatic genera in the family Mustelidae (Mammalia). Zoomorphology 110:339345.Google Scholar
Ford, L., and Cannatella, D. C. 1993. The major clades of frogs. Herpetological Monographs 7:94117.Google Scholar
Gao, K.-Q., and Shubin, N. H. 2001. Late Jurassic salamanders from northern China. Nature 410:574577.Google Scholar
Gao, K.-Q., and Shubin, N. H. 2003. Earliest known crown-group salamanders. Nature 422:4244828.Google Scholar
Gao, K., and Wang, Y. 2001. Mesozoic anurans from Liaoning province, China, and phylogenetic relationships of archaeobatrachian anuran clades. Journal of Vertebrate Paleontology 21:460476.Google Scholar
Girondot, M., and Laurin, M. 2003. Bone profiler: a tool to quantify, model and statistically compare bone section compactness profiles. Journal of Vertebrate Paleontology 23:458461.Google Scholar
Golubev, V. K. 1998. Narrow-armored chroniosuchians (Amphibia, Anthracosauromorpha) from the late Permian of Eastern Europe. Paleontological Journal 32:278287.Google Scholar
Hay, J. M., Ruvinsky, I., Hedges, S. B., and Maxson, L. R. 1995. Phylogenetic relationships of amphibian families inferred from DNA sequences of mitochondrial 12S and 16S ribosomal RNA genes. Molecular Biology and Evolution 12:928937.Google Scholar
Henrici, A. C., and Báez, A. M. 2001. First occurrence of Xenopus (Anura: Pipidae) on the Arabian peninsula: a new species from the upper Oligocene of Yemen. Journal of Paleontology 75:870882.Google Scholar
Hua, S., and de Buffrénil, V. 1996. Bone histology as a clue in the interpretation of functional adaptations in the Thalattosuchia (Reptilia, Crocodylia). Journal of Vertebrate Paleontology 16:703717.Google Scholar
Ivakhnenko, M. F., Golubev, V. K., Gubin, Y. M., Kalandadze, N. N., Novikov, I. V., Sennikov, A. G., and Rautian, A. S. 1997. Permian and Triassic tetrapods of Eastern Europe. Geos, Moscow.Google Scholar
Janvier, P. 1996. Early vertebrates. Clarendon, Oxford.Google Scholar
Larson, A., and Dimmick, W. W. 1993. Phylogenetic relationships of the salamander families: an analysis of congruence among morphological and molecular characters. Herpetological Monographs 7:7793.Google Scholar
Laurin, M. 1998. The importance of global parsimony and historical bias in understanding tetrapod evolution, Part I. Systematics, middle ear evolution, and jaw suspension. Annales des Sciences Naturelles, Zoologie et Biologie Animale, 13e série, 19:142.Google Scholar
Laurin, M. 2004. The evolution of body size, Cope's rule and the origin of amniotes. Systematic Biology 53:594622.Google Scholar
Laurin, M., and Reisz, R. R. 1995. A reevaluation of early amniote phylogeny. Zoological Journal of the Linnean Society 113:165223.Google Scholar
Leclair, R. Jr., Lamontagne, C., and Aubin, A. 1993. Allométrie de la masse du squelette chez des amphibiens anoures. Canadian Journal of Zoology 71:352357.Google Scholar
Legendre, P., Lapointe, F.-J., and Casgrain, P. 1994. Modeling brain evolution from behavior: a permutational regression approach. Evolution 48:14871499.Google Scholar
Lehman, J.-P. 1955. Rachitomi. Pp. 67125in Piveteau, J., ed. Traité de Paléontologie. Masson, Paris.Google Scholar
Madar, S. I. 1998. Structural adaptations of early archaeocete long bones. Pp. 353378in Thewissen, J. G. M., ed. The emergence of whales—evolutionary patterns in the origin of Cetacea. Plenum, New York.Google Scholar
Maddison, W. P. 1990. A method for testing the correlated evolution of two binary characters: are gains or losses concentrated on certain branches of a phylogenetic tree? Evolution 44:539557.Google Scholar
Maddison, W. P. 1991. Squared-change parsimony reconstructions of ancestral states for continuous-valued characters on a phylogenetic tree. Systematic Zoology 40:304314.Google Scholar
Maddison, W. P., and Maddison, D. R. 2002. Mesquite: a modular system for evolutionary analysis, Version 0.992. http://mesquiteproject.org.Google Scholar
Maddison, W. P., Maddison, D. R., and Midford, P. 2002. Tree-Farm package of modules for Mesquite, Version 0.992. http://mesquiteproject.org.Google Scholar
Martin, R. F. 1972. Evidence from osteology. Pp. 3770in Blair, W. F., ed. Evolution in the genus Bufo. University of Texas Press, Austin.Google Scholar
Milner, A. C. 1980. A review of the Nectridea (Amphibia). Pp. 377405in Panchen, A. L., ed. The terrestrial environment and the origin of land vertebrates. Academic Press, London.Google Scholar
Nopsca, F. B. 1923. Vorläufige Notiz über die Pachyostose und Osteosklerose einiger mariner Wirbeltiere. Anatomischer Anzeiger 56:353359.Google Scholar
Olson, E. C. 1967. Early Permian vertebrates. Oklahoma Geological Survey Circular 74.Google Scholar
Padian, K., de Ricqlès, A., and Horner, J. R. 2001. Dinosaurian growth rates and bird origins. Nature 412:405408.Google Scholar
Purvis, A., and Rambaut, A. 1995. Comparative analysis by independent contrasts (CAIC): an Apple Macintosh application for analysing comparative data. Cabios 11:247251.Google Scholar
Rambaut, A., and Charleston, M. 2001. TreeEdit. University of Oxford. Available athttp://evolve.zoo.ox.ac.uk/Google Scholar
de Ricqlès, A. 1974a. Recherches paléohistologiques sur les os longs des tétrapodes. V. Cotylosaures et mésosaures. Annales de Paléontologie 60:171216.Google Scholar
de Ricqlès, A. 1974b. Recherches paléohistologiques sur les os longs des tétrapodes. IV. Eothériodontes et pélycosaures. Annales de Paléontologie 60:139.Google Scholar
de Ricqlès, A. 1975a. Quelques remarques paléo-histologiques sur le problème de la néoténie chez les stégocéphales. Problémes Actuels de Paléontologie: Evolution des Vertébrés. Colloque International du Centre National de Recherche Scientifique 218:351363.Google Scholar
Ricqlès, A. de. 1975b. Recherches paléohistologiques sur les os longs des tétrapodes. VII. Sur la classification, la signification fonctionnelle et l'histoire des tissus oseux des tétrapodes. Première partie. Annales de Paléontologie 61:51129.Google Scholar
Ricqlès, A. de. 1976. Recherches paléohistologiques sur les os longs des tétrapodes. VII. Sur la classification, la signification fonctionnelle et l'histoire des tissus oseux des tétrapodes. Deuxième partie. Annales de Paléontologie 62:71126.Google Scholar
Ricqlès, A. de. 1977. Recherches paléohistologiques sur les os longs des tétrapodes. VII. Sur la classification, la signification fonctionnelle et l'histoire des tissus osseux des tétrapodes. Deuxième partie, suite. Annales de Paléontologie 63:3356.Google Scholar
Ricqlès, A. de. 1981. Recherches paléohistologiques sur les os longs des tétrapodes. VI. Stégocéphales. Annales de Paléontologie 67:141160.Google Scholar
Ricqlès, A. de. 1989. Les mécanismes hétérochroniques dans le retour des tétrapodes au milieu aquatique. Geobios Mémoire Spécial 12:337348.Google Scholar
Ricqlès, A. de. 1993. Some remarks on palaeothistology from a comparative evolutionary point of view. Pp. 3777in Grupe, G. and Garland, A. N., eds. Histology of ancient human bone. Springer, Berlin.Google Scholar
Ricqlès, A. de, and de Buffrénil, V. 2001. Bone histology, heterochronies and the return of tetrapods to life in water: were are we? Pp. 289310in Mazin, J. M. and de Buffrénil, V., eds. Secondary adaptation of tetrapods to life in water. Pfeil, Munich.Google Scholar
Romer, A. S. 1957. Origin of the amniote egg. Scientific Monthly 85:5763.Google Scholar
Romer, A. S. 1958. Tetrapod limbs and early tetrapod life. Evolution 12:365369.Google Scholar
Romer, A. S. 1966. Vertebrate paleontology. University of Chicago Press, Chicago.Google Scholar
Ruta, M., Coates, M. I., and Quicke, D. D. L. 2003. Early tetrapod relationships revisited. Biological Reviews 78:251345.Google Scholar
Skulan, J. 2000. Has the importance of the amniote egg been overstated? Zoological Journal of the Linnean Society 130:235261.Google Scholar
Sullivan, C., and Reisz, R. R. 1999. First record of Seymouria (Ver-tebrata: Seymouriamorpha) from Early Permian fissure fills at Richards Spur, Oklahoma. Canadian Journal of Earth Sciences 36:12571266.Google Scholar
Sumida, M., Ogata, M., and Nishioka, M. 2000. Molecular phylogenetic relationships of pond frogs distributed in the palearctic region inferred from DNA sequences of mitochondrial 12S ribosomal RNA and cytochrome b genes. Molecular Phylogenetics and Evolution 16:278285.Google Scholar
Sumida, S. S. 1997. Locomotor features of taxa spanning the origin of amniotes. Pp. 353398in Sumida, S. and Martin, K., eds. Amniote origins: completing the transition to land. Academic Press, London.Google Scholar
Sumida, S. S., Berman, D. S., and Martens, T. 1998. A new trematopid amphibian from the Lower Permian of central Germany. Palaeontology 41:605629.Google Scholar
Swofford, D. L., and Maddison, W. P. 1987. Reconstructing ancestral character states under Wagner parsimony. Mathematical Biosciences 87:199229.Google Scholar
Taylor, M. A. 1994. Stone, bone or blubber? Buoyancy control strategies in aquatic tetrapods. Pp. 151161in Maddock, L., Bone, Q., and Rayner, J. M. V., eds. Mechanics and physiology of animals swimming. Cambridge University Press, Cambridge.Google Scholar
Titus, T. A., and Larson, A. 1995. A molecular phylogenetic perspective on the evolutionary radiation of the salamander family Salamandridae. Systematic Biology 44:125151.CrossRefGoogle Scholar
Titus, T. A., and Larson, A. 1996. Molecular phylogenetics of desmognathine salamanders (Caudata: Plethodontidae): a reevaluation of evolution in ecology, life history and morphology. Systematic Biology 45:451472.Google Scholar
Trueb, L. 1999. The early Cretaceous pipoid anuran, Thoraciliacus: redescription, revaluation, and taxonomic status. Herpetologica 55:139157.Google Scholar
Uzzell, T. 1982. Immunological relationship of Western Palearctic Water Frogs (Salientia: Ranidae). Amphibia-Reptilia 3:135143.Google Scholar
Veith, M., Steinfartz, S., Zardoya, R., Seithz, A., and Meyer, A. 1998. A molecular phylogeny of “true” salamanders (family Salamandridae) and the evolution of terrestriality of reproductive modes. Journal of Zoological Systematics and Evolutionary Research 36:716.Google Scholar
Wall, W. P. 1983. The correlation between high limb-bone density and aquatic habits in recent mammals. Journal of Paleontology 57:197207.Google Scholar
Watson, D. M. S. 1914. Procolophon trigoniceps, a cotylosaurian reptile from South Africa. Proceedings of the Zoological Society of London 2022:735747.Google Scholar
Wellstead, C. F. 1991. Taxonomic revision of the Lysorophia, Per-mo-Carboniferous lepospondyl amphibians. Bulletin of the American Museum of Natural History 209:190.Google Scholar
Werneburg, R. 1991. Die Branchiosaurier aus dem Unterrotliegend des Döhlener Beckens bei Dresden. Veröffentlichungen des Naturhistorisches Museum Schleusingen 6:7599.Google Scholar
Wiffen, J., de Buffrénil, V., de Ricqlès, A., and Mazin, J.-M. 1995. Ontogenetic evolution of bone structure in late Cretaceous Plesiosauria from New Zealand. Geobios 28:625640.Google Scholar
Williston, S. W. 1911. A new family of reptiles from the Permian of New Mexico. American Journal of Science 31:378398.Google Scholar
Witmer, L. M. 1995. The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils. Pp. 1933in Thomason, J. J., ed. Functional morphology in vertebrate paleontology. Cambridge University Press, New York.Google Scholar
Yamaoka, K., Nakagawa, T., and Uno, T. 1978. Application of Akaike's information criterion (AIC) in the evaluation of linear pharmacokinetic equations. Journal of Pharmacokinetics and Biopharmaceutics 6:165175.Google Scholar