Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-04T00:02:10.482Z Has data issue: false hasContentIssue false

Fossil bovid diets indicate a scarcity of grass in the Langebaanweg E Quarry (South Africa) late Miocene/early Pliocene environment

Published online by Cambridge University Press:  08 April 2016

Deano D. Stynder*
Affiliation:
Department of Archaeology, University of Cape Town, Private Bag x3, Rondebosch, 7701, South Africa. E-mail: Deano.Stynder@uct.ac.za

Abstract

The floral community along South Africa's southwest coast today is dominated by shrubby strandveld, renosterveld, and coastal fynbos vegetation. The grass family (Poaceae), represented primarily by C3 taxa, is scarce by comparison. Nevertheless, grass has a long history along this coast, as indicated by the presence of ∼5-million-year-old C3 grass pollen and phytoliths in sediments at the fossil locality of Langebaanweg E Quarry. Because the pollen and phytoliths of other plant families, including fynbos, have also been found, it has been difficult to determine whether grass was scarce or abundant in this environment. In order to shed light on this issue, I analyzed the dental mesowear of the E Quarry bovids. Results indicate that only one (Simatherium demissum) of seven analyzed species was a grazer. These compare well with the results of a microwear texture analysis, which indicate that none of the seven analyzed species were obligate grazers. These two studies point strongly toward a heavily wooded environment and not one that was dominated by grass. Although a conventional dental microwear analysis did identify three out of seven E Quarry bovid species as grazers (Bed3aN Damalacra, Kobus subdolus, and S. demissum), only S. demissum probably actually was a grazer. I suggest that the grazer signal exhibited by the other two bovid samples indicate that these species were taking advantage of a spike in grass abundance, probably during the winter growth season.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bender, M. M. 1971. Variations in the 13C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry 10:12391245.CrossRefGoogle Scholar
Bocherens, H., Koch, P. L., Mariotti, A., Geraads, D., and Jaeger, J.-J. 1996. Isotopic biogeochemistry of mammalian enamel from African Pleistocene hominid sites. Palaios 11:306318.Google Scholar
Brizuela, M. A., Detling, J. K., and Cid, M. S. 1986. Silicon concentration of grasses growing in sites with different grazing histories. Ecology 67:10981101.CrossRefGoogle Scholar
Coetzee, J. A., and Rogers, R. 1982. Palynological and lithological evidence for the Miocene palaeoenvironment in the Saldanha region (South Africa). Palaeogeography, Palaeoclimatology, Palaeoecology 39:7185.CrossRefGoogle Scholar
Cowling, R. M. 1990. The ecology of Fynbos: nutrients, fire and diversity. Oxford University Press, Cape Town.Google Scholar
Cowling, R. M, and Richardson, D. 1998. Fynbos-South Africa's unique floral kingdom. Fernwood Press, Vlaeberg, Western Cape. Google Scholar
Cowling, R. M., Richardson, D. M., Pierce, S. M., and Huntley, B. J., eds. 1997. Vegetation of South Africa. Cambridge University Press, Cambridge.Google Scholar
Deacon, J., and Lancaster, I. N. 1988. Late Quaternary palaeoenvironments of southern Africa. Clarendon, Oxford.Google Scholar
DeNiro, M. J., and Epstein, S. 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42:495506.CrossRefGoogle Scholar
Fortelius, M., and Solounias, N. 2000. Functional characterization of ungulate molars using the abrasion-attrition wear gradient: a new method for reconstructing paleodiets. American Museum Novitates 3301:136.2.0.CO;2>CrossRefGoogle Scholar
Franz-Odendaal, T. A., and Kaiser, T. M. 2003. Differential mesowear in the maxillary and mandibular cheek dentition of some ruminants (Artiodactyla). Annales Zoologici Fennici 40:395410.Google Scholar
Franz-Odendaal, T. A., and Solounias, N. 2004. Comparative dietary evaluations of an extinct giraffid (Sivatherium hendeyi) (Mammalia, Giraffidae, Sivatheriinae) from Langebaanweg, South Africa (early Pliocene). Geodiversitas 26:675685.Google Scholar
Franz-Odendaal, T. A., Lee-Thorp, J. A., and Chinsamy, A. 2002. New evidence for the lack of C4 grassland expansions during the early Pliocene at Langebaanweg, South Africa. Paleobiology 28:378388.2.0.CO;2>CrossRefGoogle Scholar
Franz-Odendaal, T. A., Kaiser, T. M., and Bernor, R. L. 2003. Systematics and dietary evaluation of a fossil equid from South Africa. South African Journal of Science 99:453459.Google Scholar
Gagnon, M., and Chew, A. E. 2000. Dietary preferences in extant African Bovidae. Journal of Mammalogy 8:490511.2.0.CO;2>CrossRefGoogle Scholar
Gentry, A. 1980. Fossil Bovidae (Mammalia) from Langebaanweg, South Africa. Annals of the South African Museum 79:213337.Google Scholar
Grine, F. E., and Hendey, Q. B. 1981. Earliest primate remains from South Africa. South African Journal of Science 77:374376.Google Scholar
Gruvaeus, G., and Weiner, H. 1972. Two additions to hierarchical cluster analysis. British Journal of Mathematical and Statistical Psychology 25:200206.CrossRefGoogle Scholar
Goldblatt, P., and Manning, J. 2002. Plant diversity of the Cape Region of South Africa. Annals of the Missouri Botanical Garden 89:281302.CrossRefGoogle Scholar
Haile-Selassie, Y., Woldegabriel, G., White, T. D., Bernor, R. L., Degusta, D., Renne, P. R., Hart, W. K., Vrba, E., Ambrose, S., and Howell, F. C. 2004. Mio-Pliocene mammals from the Middle Awash, Ethiopia. Geobios 37:536552.CrossRefGoogle Scholar
Harris, J. M. 1976. Pliocene Giraffoidea (Mammalia: Artiodactyla) from the Cape Province. Annals of the South African Museum 69:325353.Google Scholar
Hartigan, J. A. 1975. Clustering algorithms. Wiley, New York.Google Scholar
Hendey, Q. B. 1972. Further observations on the age of the mammalian fauna from Langebaanweg, Cape Province. Paleoecology 6:172175.Google Scholar
Hendey, Q. B. 1973. Fossil occurrences at Langebaanweg, Cape Province. Nature 244:1314.CrossRefGoogle Scholar
Hendey, Q. B. 1974. The late Cenozoic carnivore of the south-western Cape Province. Annals of the South African Museum 63:1369.Google Scholar
Hendey, Q. B. 1976. Fossil Peccary from the Pliocene of South Africa. Science 192:787789.CrossRefGoogle ScholarPubMed
Hendey, Q. B. 1981. Geological succession at Langebaanweg, Cape Province, and global events of the late Tertiary. South African Journal of Science 77:3338.Google Scholar
Hendey, Q. B. 1983. Palaeoenvironmental implications of the late Tertiary vertebrate fauna of the Fynbos region. Pp. 100115 in Deacon, H. J., Hendey, Q. B., and Lambrechts, J. J. N., eds. Fynbos paleoecology: a preliminary synthesis. Foundation for Research Development, Pretoria.Google Scholar
Hendey, Q. B., and Lambrechts, J. J. N., eds. 1984. Southern African late Tertiary vertebrates. Pp. 81106 in Klein, R. G., ed. Southern African prehistory and palaeoenvironments. A. A. Balkema, Rotterdam.Google Scholar
Hofmann, R. R., and Stewart, D. R. M. 1972. Grazer or browser: a classification based on the stomach structure and feeding habits of East African ruminants. Mammalia 36:226240.CrossRefGoogle Scholar
Janis, C. M., and Fortelius, M. 1988. On the means whereby mammals achieve increased functional durability of their dentitions, with especial reference to limiting factors. Biological Reviews 63:197230.CrossRefGoogle Scholar
Kaiser, T. M., Solounias, N., Fortelius, M., Bernor, R. L., and Schrenk, F. 2000. Tooth mesowear analysis on Hippotherium primigenium from the Vallesian Dinotheriensande (Germany): a blind test study. Carolinea 58:103114.Google Scholar
Kaiser, T. M., and Franz-Odendaal, T. A. 2004. A mixed-feeding Equus species from the middle Pleistocene of South Africa. Quaternary Research 62:316323.CrossRefGoogle Scholar
Leakey, M. G., Feibel, C. S., Bernor, R. L., Harris, J. M., Cerling, T. E., Stewart, K. M., Storrs, G. W., Walker, A., Werdelin, L., and Winkler, A. J. 1996. Lothagam: a record of faunal change in the late Miocene of East Africa. Journal of Vertebrate Paleontology 16:556570.CrossRefGoogle Scholar
Lee-Thorp, J. A., and Sillen, A. 2001. Chemical signals in fossils offer new opportunities for assessing and comparing dietary niches of South African hominids. Pp. 321325 in Tobias, P. V., Raath, M. A., Moggi-Cecchi, J., and Doyle, G. A., eds. Humanity from African naissance to coming millennia. Firenze University Press, Florence.Google Scholar
Lee-Thorp, J. A., and van De Merwe, N. 1987. Carbon isotope analysis of fossil bone apatite. South African Journal of Science 83:712715.Google Scholar
Lee-Thorp, J. A., Stealy, J. C., and van der Merwe, N. J. 1989. Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet. Journal of Archaeological Science 16:585599.CrossRefGoogle Scholar
Lucas, P. W., Turner, I. M., Dominy, N. J., and Yamashita, N. 2000. Mechanical defences to herbivory. Annals of Botany 86:913920.CrossRefGoogle Scholar
Mendoza, M., Janis, C. M., and Palmqvist, P. 2002. Characterizing complex craniodental patterns related to feeding behaviour in ungulates: a multivariate approach. Journal of Zoology 258:223246.CrossRefGoogle Scholar
Merceron, G., and Ungar, P. 2005. Dental microwear and palaeoecology of bovids from the early Pliocene of Langebaanweg, Western Cape Province, South Africa. South Africa Journal of Science 101:365370.Google Scholar
Nagy, K. A. 1994. Seasonal water, energy and food use by free-living, arid habitat mammals. Australian Journal of Zoology 42:5563.CrossRefGoogle Scholar
Nagy, K. A., and Knight, M. H. 1994. Energy, water and food use by springbok antelope (Antidorcas marsupialis) in the Kalahari Desert. Journal of Mammalogy 75(4):860872.CrossRefGoogle Scholar
Pierce, S. M. 1984. A synthesis of plant phenology in the Fynbos Biome. South African national scientific report no. 88. CSIR, Pretoria.Google Scholar
Plummer, T. W., and Bishop, L. C. 1994. Hominid paleoecology at Olduvai Gorge, Tanzania as indicated by antelope remains. Journal of Human Evolution 29:321362.Google Scholar
Reed, K. E. 1996. The paleoecology of Makapansgat and other African Plio-Pleistocene hominid localities. . State University of New York at Stony Brook, New York.Google Scholar
Rivals, F., and Deniaux, B. 2003. Dental microwear analysis for investigating the diet of an argali population (Ovis amnion antique) of mid-Pleistocene age, Caune de l'Arago Cave, eastern Pyrenees, France. Palaeogeography, Palaeoclimatology, Palaeoecology 193:443445.CrossRefGoogle Scholar
Roberts, D. L. 2006. Lithostratigraphy of the Varswater Formation. South African Committee for Stratigraphy-Lithostratigraphic Series 9:2731.Google Scholar
Rossouw, L., Stynder, D. D., and Haarhof, P. 2009. Evidence of opal phytolith preservation in the Langebaanweg E Quarry Varswater Formation and its potential for palaeohabitat reconstruction. South African Journal of Science 105:223227.Google Scholar
Rutherford, M. C., and Westfall, R. H. 1986. Biomes of southern Africa: an objective categorization. Memoirs of the Botanical Survey of South Africa 54:198.Google Scholar
Sanders, W. L. 2007. Taxonomic review of fossil Proboscidea (Mammalia) from Langebaanweg, South Africa. Transactions of the Royal Society of South Africa 62:116.CrossRefGoogle Scholar
Schubert, B. W., Ungar, P. S., Sponheimer, M., and Reed, K. E. 2006. Microwear evidence for Plio-Pleistocene bovid diets from Makapansgat Limeworks Cave, South Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 241:301319.CrossRefGoogle Scholar
Scott, L. 1995. Pollen evidence for vegetational and climatic change in southern Africa during the Neogene and Quaternary. Pp. 6576 in Vrba, E. S., Denton, G. H., Partridge, T. C., and Burckle, L. H., eds. Paleoclimate and evolution with emphasis on human origins. Yale University Press, New Haven, Conn. Google Scholar
Scott, L., Anderson, H. M., and Anderson, J. M. 1997. Vegetation history. Pp. 6290 in Cowling, R. M., Richardson, D. M., and Pierce, S. M., eds. Vegetation of Southern Africa. Cambridge University Press, Cambridge.Google Scholar
Scott, R. S., Ungar, P. S., Bergstrom, T. S., Brown, C. A., Grine, F. E., Teaford, M. F., and Walker, A. 2005. Dental microwear texture analysis shows within species dietary variability in fossil hominins. Nature 436:693695.CrossRefGoogle ScholarPubMed
Scott, R. S., Ungar, P. S., Bergstrom, T. S., Brown, C. A., Childs, B. E., Teaford, M. F., and Walker, A. 2006. Dental microwear texture analysis: technical considerations. Journal of Human Evolution 51:339349.CrossRefGoogle ScholarPubMed
Semprebon, G. M., and Rivals, F. 2007. Was grass more prevalent in the pronghorn past? An assessment of the dietary adaptations of Miocene to recent Antilocapridae (Mammalia: Artiodactyla). Palaeogeography, Palaeoclimatology, Palaeoecology 253:332347.CrossRefGoogle Scholar
Solounias, N., and Moelleken, S. M. C. 1992. Tooth microwear analysis of Eotragus sansaniensis (Mammalia Ruminantia): one of the oldest known bovids. Journal of Vertebrate Palaeontology 12:113121.CrossRefGoogle Scholar
Solounias, N., and Semprebon, G. M. 2002. Advances in the reconstruction of ungulate ecomorphology with application to early fossil equids. American Museum Novitates 3366:149.2.0.CO;2>CrossRefGoogle Scholar
Solounias, N., Teaford, M. F., and Walker, A. 1988. Interpreting the diet of extinct ruminants: The case of a non-browsing giraffid. Paleobiology 14:287300.CrossRefGoogle Scholar
Solounias, N., Moelleken, S. M. C., and Plavcan, J. M. 1995. Predicting the diet of extinct bovids using masseteric morphology. Journal of Vertebrate Paleontology 15:795805.CrossRefGoogle Scholar
Spencer, L. M. 1995. Morphological correlates of dietary resource partitioning in the African Bovidae. Journal of Mammalogy 76:448471.CrossRefGoogle Scholar
Sponheimer, M., Reed, K. E., and Lee-Thorp, J. A. 1999. Combining isotopic and ecomorphological data to refine bovid paleodietary reconstruction: a case study from the Makapansgat Limeworks hominin locality. Journal of Human Evolution 36:705718.CrossRefGoogle ScholarPubMed
Sponheimer, M., Lee-Thorp, J. A., DeRuiter, D. J., Smith, J. M., Van Der Merwe, N. J., Reed, K. E., Grant, C. C., Ayliffe, L. K., Robinson, T. F., Heidelberger, C., and Marcus, W. 2003. Diets of southern African Bovidae: stable isotope evidence. Journal of Mammalogy 84:471479.2.0.CO;2>CrossRefGoogle Scholar
Stynder, D. D. 2009. The diets of ungulates from the hominid fossil-bearing site of Elandsfontein, Western Cape, South Africa. Quaternary Research 71:6270.CrossRefGoogle Scholar
Tankard, A. J., and Rogers, J. 1978. Late Cenozoic palaeoenvironments on the west coast of southern Africa. Journal of Biogeography 5:319337.CrossRefGoogle Scholar
Teaford, M. F. 1994. Dental microwear and dental function. Evolutionary Anthropology 3(1):1730.CrossRefGoogle Scholar
Ungar, P., Merceron, G., and Scott, R. 2007. Dental microwear texture analysis of Varswater bovids and early Pliocene paleoecology of Langebaanweg, Western Cape Province, South Africa. Journal of Mammalian Evolution 14:163181.CrossRefGoogle Scholar
Vrba, E. S. 1980. The significance of bovid remains as indicators of environment and predation patterns. Pp. 247271 in Behrensmeyer, A. K. and Hill, A., eds. Fossils in the making. University of Chicago Press, Chicago.Google Scholar
Vrba, E. S. 1985. Ecological and adaptive changes associated with early hominid evolution. Pp. 6371 in Delson, E., ed. Ancestors: the hard evidence. Alan R. Liss, New York.Google Scholar
Walker, A. C., Hoeck, H., and Perez, L. 1978. Microwear of mammalian teeth as indicator of diet. Science 201:908910.CrossRefGoogle ScholarPubMed
Werdelin, L. 2006. The position of Langebaanweg in the evolution of Carnivora in Africa. African Natural History 2:201202.Google Scholar