Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-09T19:17:42.073Z Has data issue: false hasContentIssue false

Gigantism in tadpoles of the Neogene frog Palaeobatrachus

Published online by Cambridge University Press:  08 April 2016

Zbyněk Roček
Affiliation:
Department of Paleobiology, Geological Institute, Academy of Sciences, Rozvojová 135, CZ-165 00 Prague, Czech Republic, and Department of Zoology, Charles University, Viničná 7, CZ-128 44 Prague 2, Czech Republic. E-mail: Rocek@gli.cas.cz
Ronald Böttcher
Affiliation:
Staatliches Museum für Naturkunde, Rosenstein 1, D-70191 Stuttgart, Germany. E-mail: boettcher.smns@naturkundemuseum-bw.de
Richard Wassersug
Affiliation:
Department of Anatomy and Neurobiology, Sir Charles Tupper Medical Building, 5850 College Street, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada. E-mail: tadpole@dal.ca

Abstract

We describe three giant palaeobatrachid fossil tadpoles of the genus Palaeobatrachus (Nieuwkoop-Faber [NF] stages 60–64) from the Miocene of Randecker Maar, Germany. The largest was 150 mm at the beginning of metamorphosis (stage 60), whereas the smallest was 100 mm and approaching the end of metamorphosis (stage 64). In contrast, normal palaeobatrachid tadpoles and their pipid relatives, both extinct and extant, rarely exceed 60 mm in length. We review here both ecological and pathological conditions that are conducive to the development of gigantism in tadpoles. Tadpoles that lack a thyroid gland become exceptionally large and arrest development at early hindlimb stages (NF stages 53–56). However, the advanced metamorphic stages of the giant Palaeobatrachus tadpoles indicate that they were able to metamorphose, and thus were not athyroid. Environmental factors—pond size and permanence, predators, duration of the growing season—may all contribute to tadpole gigantism in certain extant anuran species. We identify suites of ecological features that distinguish extant anurans with large tadpoles from high-latitude and high-altitude permanent lakes in temperate regions (e.g., certain Rana and Telmatobius) from tropical species, such as Pseudis paradoxa, whose tadpoles normally achieve large size in temporary seasonal ponds. The paleoecology of Randecker Maar suggests that Palaeobatrachus tadpoles lived in a permanent semitropical lake, but one with few predators.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Allen, B. 1929. The influence of the thyroid gland and hypophysis upon growth and development of amphibian larvae. Quarterly Review of Biology 4:325352.Google Scholar
Astibia, H., Buffetaut, E., Buscalioni, A. D., Cappetta, H., Corral, C., Estes, R., Garcia-Garmilla, F., Jaeger, J., Jimenez-Fuentes, E., Le Leuff, J., Mazin, J. M., Orue-Etxebarria, X., Pereda-Suberbiola, J., Powell, J. E., Rage, J. C., Rodriguez-Lazaro, J., Sanz, J. L., and Tong, H. 1990. The fossil vertebrates from Laño (Basque Country, Spain); new evidence on the composition and affinities of the Late Cretaceous continental faunas of Europe. Terra Nova 2:460466.Google Scholar
Báez, A. M., and Púgener, L. A. 2003. Ontogeny of a new Palaeogene pipid frog from southern South America and xenopodinomorph evolution. Zoological Journal of the Linnean Society 139:439476.Google Scholar
Berger, L., and Uzzell, T. 1977. Vitality and growth of progeny from different egg size classes of Rana esculenta L. (Amphibia, Salientia). Zoologica Poloniae 26:291317.Google Scholar
Böhme, M. 2003. The Miocene Climatic Optimum: evidence from ectothermic vertebrates of Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology 195:389401.Google Scholar
Bolek, M. 2004. Rana catesbeiana gigantic tadpole. Herpetological Review 35:376377.Google Scholar
Bolten, R., Gall, H., and Jung, W. 1976. Die obermiozäne (sarmatische) Fossil-Lagerstätte Wemding im Nördlinger Ries (Bayern). Geologische Blätter für Nortdost-Bayern 26:7594.Google Scholar
Borkin, L. J., Berger, L., and Günther, R. 1982. Giant tadpoles of water frogs within Rana esculenta complex. Zoologica Poloniae 29:103127.Google Scholar
Boschwitz, D. 1957. Thyroidless tadpoles of Pelobates syriacus Boettger H. Copeia 1957:310311.Google Scholar
Buffetaut, E., Costa, G., Le Loeuff, J., Martin, M., Rage, J.-C., Valentin, X., and Tong, H. 1996. An Early Campanian vertebrate fauna from the Villeveyrac Basin (Hérault, Southern France). Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1996:116.Google Scholar
Cannatella, D. C., and de Sá, R. O. 1993. Xenopus laevis as a model organism. Systematic Biology 42:476507.Google Scholar
Chipman, A. D., and Tchernov, E. 2002. Ancient ontogenies: larval development of the Lower Cretaceous anuran Shomronella jordanica (Amphibia: Pipoidea). Evolution and Development 4:8695.Google Scholar
Cope, E. D. 1865. Sketch of the primary groups of Batrachia Salientia. Natural History Review 5:97120.Google Scholar
Emerson, S. 1988. The giant tadpole of Pseudis paradoxa . Biological Journal of the Linnean Society 34:93104.Google Scholar
Estes, R. 1977. Relationships of the South African fossil frog Eoxenopoides reuningi (Anura, Pipidae). Annals of the South African Museum 73:4980.Google Scholar
Estes, R., Špinar, Z. V., and Nevo, E. 1978. Early Cretaceous pipid tadpoles from Israel (Amphibia: Anura). Herpetologica 34:374393.Google Scholar
Etkin, W., and Lehrer, R. 1960. Excess growth in tadpoles after transplantation of the adenohypophysis. Endocrinology (Baltimore) 67:457466.Google Scholar
Fraas, E. 1909. Rana hauffiana n.sp. aus den Dysodilschiefern des Randecker Maares. Jahreshefte des Vereins für vaterländische Naturkunde in Württemberg 65:17.Google Scholar
Freytag, G. E. 1980. Lurche, Amphibia. Pp. 79101 in Stresemann, E., ed. Excursionsfauna für die Gebiete der DDR und BRD. Volk und Wissen, Berlin.Google Scholar
Gaudant, J., and Reichenbacher, B. 2002. Anatomie et affinités des Prolebias aff. weileri von Salis (Poissons teleostéens, Cyprinodontidae) du Miocène inférieur à moyen du Randecker Maar (Wurtemberg, Allemagne). Stuttgarter Beiträge zur Naturkunde B 331:111.Google Scholar
Gregor, H.-J. 1986. Zur Flora des Randecker Maares (Miozän, Baden-Württemberg). Stuttgarter Beiträge zur Naturkunde B 122:129.Google Scholar
Hauser, K. F., and Gona, A. G. 1983. Effects of thyroidectomy and season on the external granular layer of the cerebellum in metamorphosing bullfrog tadpoles (Rana catesbeiana). Experimental Neurology 79:265277.Google Scholar
Heizmann, E. P. J. 1983. Die Gattung Cainotherium (Cainotheriidae) im Orleanium und im Astaracium Süddeutschlands. Eclogae Geologicae Helvetiae 76:781825.Google Scholar
Hoskins, R., and Morris, M. 1917. On thyroidectomy in Amphibia. Proceedings of the Society for Experimental Biology and Medicine 14:7475.CrossRefGoogle Scholar
Krautter, M., and Schweigert, G. 1991. Bemerkungen zur Sedimentation, Flora und dem Paläoklima des Randecker Maars (Unter-/Mittel-Miozän, Schwäbische Alb). Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1991:505514.CrossRefGoogle Scholar
McDiarmid, R. W., and Altig, R. 1999. Tadpoles: the biology of anuran larvae. University of Chicago Press, Chicago.Google Scholar
Nakott, J. 1967. Riesenkaulquappen entdeckt. Kosmos 8:5.Google Scholar
Nevo, E. 1968. Pipid frogs from the Early Cretaceous of Israel and pipid evolution. Bulletin of the Museum of Comparative Zoology of Harvard University 136:255318.Google Scholar
Nieuwkoop, P. D., and Faber, J. 1967. Normal Table of Xenopus laevis (Daudin). North-Holland Publishing, Amsterdam.Google Scholar
Nöllert, A. 1990. Die Knoblauchkröte. Die Neue Brehm-Bücherei 561. A. Ziemsen, Wittenberg Lutherstadt, Germany.Google Scholar
Rage, J.-C., and Roček, Z. 2003. Evolution of anuran assemblages in the Tertiary and Quaternary of Europe, in the context of palaeoclimate and palaeogeography. Amphibia-Reptilia 24:133167.Google Scholar
Roček, Z. 1996. The salamander Brachycormus noachicus from the Oligocene of Europe, and the role of neoteny in the evolution of salamanders. Palaeontology 39:477495.Google Scholar
Roček, Z. 2003. Larval development in Oligocene palaeobatrachid frogs. Acta Palaeontologica Polonica 48:595607.Google Scholar
Roček, Z., and Rage, J.-C. 2000. Tertiary Anura of Africa, Asia, Europe, North America, and Australia. Pp. 13341389 in Carroll, R. L. and Heatwole, H., eds. Amphibian biology—paleontology. Surrey Beatty, Chipping Norton, Australia.Google Scholar
Roček, Z., and Van Dijk, E. 2006. Patterns of larval development in Mesozoic pipid frogs. Acta Palaeontologica Polonica 51:111126.Google Scholar
Ročková, H., and Roček, Z. 2005. Development of the pelvis and posterior part of the vertebral column in the Anura. Journal of Anatomy 206:1735.Google Scholar
Rödel, M.-O. 2000. Herpetofauna of West Africa, Vol. I. Amphibians of the West African savanna. Edition Chimaira, Frankfurt am Main, Germany.Google Scholar
Rot-Nikcevic, I., and Wassersug, R. J. 2004. Arrested development in Xenopus laevis tadpoles: how size constrains metamorphosis. Journal of Experimental Biology 207:21332145.Google Scholar
Rüffle, L. 1963. Die obermiozäne Flora vom Randecker Maar. Paläontologische Abhandlungen 1/3:139298.Google Scholar
Sanchiz, B., and Szyndlar, Z. 1984. Pleistocene amphibian fauna from Kozi Grzbiet in the Holy Cross Mts. Acta Geologica Polonica 34:5162.Google Scholar
Sänger, P. 1958. Erfahrungen mit der Knoblauchkröte (Pelobates fuscus). Aquarien Terrarien 5:29.Google Scholar
Schweigert, G. (with contributions by R. Böttcher, E. P. J. Heizmann, and W. Wohnhas). 1998. Das Randecker Maar. Stuttgarter Beiträge zur Naturkunde C 43:170.Google Scholar
Špinar, Z. V. 1972. Tertiary frogs from Central Europe. Academia, Prague.Google Scholar
Špinar, Z. V. 1980. The discovery of a new species of pipid frog (Anura, Pipidae) in the Oligocene of Central Libya. Pp. 327348 in Salem, M. J. and Busrevil, M. T., eds. The geology of Libya 1. Academic Press, London.Google Scholar
Vergnaud-Grazzini, C., and Hoffstetter, R. 1972. Présence de Palaeobatrachidae (Anura) dans des gisements tertiaires français. Palaeovertebrata 5:157177.Google Scholar
von Meyer, H. 1860. Frösche aus Tertiär-Gebilden Deutschland's. Palaeontographica 7:123182.Google Scholar
Wager, V. A. 1965. The frogs of South Africa. Purnell, Cape Town.Google Scholar
Wassersug, R. J., and Wake, D. B. 1995. Fossil tadpoles from the Miocene of Turkey. Alytes 12:145157.Google Scholar
Wesenberg-Lund, C. 1922. Contribution to the biology of Danish Batrachia. Internationale Revue der Gesamten Hydrobiologie und Hydrographie 10:2330.Google Scholar
Wuttke, M. 1996. Die Frösche von Rott und Orsberg. Pp. 6974 in von Koenigswald, W., ed. Fossillagerstätte Rott bei Hennef im Siebengebirge. Rheinlandia, Siegburg, Germany.Google Scholar
Yuan, C., Zhang, H., Li, M., and Ji, X. 2004. Discovery of a Middle Jurassic fossil tadpole from Daohugou Region, Nincheng, Inner Mongolia, China. Acta Geologica Sinica 78:145148. [In Chinese with English summary.] Google Scholar