Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T08:05:41.000Z Has data issue: false hasContentIssue false

Homeotic evolution in Cambrian trilobites

Published online by Cambridge University Press:  08 February 2016

Frederick A. Sundberg*
Affiliation:
Research Associate, Invertebrate Paleontology Section, Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, California 90007

Abstract

Hox genes are known from a wide variety of organisms. In arthropods, these genes control segment characteristics. Trilobites, being arthropods, probably contained eight major Hox genes that controlled their segment types. The trilobite Bauplan contains eight regions that are most likely under the influence of one or more of these Hox genes. The cephalon contains the frontal lobe, glabellar, and occipital ring regions; the thorax contains the anterior thoracic and posterior thoracic regions; and the pygidium contains the articulating ring, axial, and terminal piece regions. Changes in character distribution within or between these regions represent homeotic evolution, which may have resulted from the modification of Hox transcription or of downstream regulatory genes. A phylogenetic analysis is used to recognize homeotic evolution in trilobites, leading to the conclusion that homeotic evolution is common among Cambrian trilobites.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Akam, M., Averof, M., Castelli-Gair, J., Dawes, R., Falciani, F., and Ferrier, D. 1994. The evolving role of Hox genes in arthropods. Development 1994(Suppl.):209215.CrossRefGoogle Scholar
Averof, M., and Patel, N. H. 1997. Crustacean appendage evolution associated with changes in Hox gene expression. Nature 388:682686.CrossRefGoogle ScholarPubMed
Bergström, J. 1973. Organization, life, and systematics of trilobites. Fossil and Strata 2:169.CrossRefGoogle Scholar
Budd, G. E. 1999. Does evolution in body patterning genes drive morphological change—or vice versa? BioEssays 21:326332.3.0.CO;2-0>CrossRefGoogle Scholar
Campbell, D. P. 1974. Biostratigraphy of the Albertella and Glossopleura Zones (Lower Middle Cambrian) of northern Utah and southern Idaho. . University of Utah, Salt Lake City.Google Scholar
Carroll, S. B. 1994. Developmental regulatory mechanisms in the evolution of insect diversity. Development 1994(Suppl.):217223.CrossRefGoogle Scholar
Carroll, S. B. 1995. Homeotic genes and the evolution of arthropods and chordates. Nature 376:479485.CrossRefGoogle ScholarPubMed
Cartwright, P., Dick, M., and Buss, L. W. 1993. HOM/Hox type homeoboxes in the chelicerate Limulus polyphemus. Molecular Phylogenetics and Evolution 2:185192.CrossRefGoogle ScholarPubMed
Casanova, J., Sanchez-Herrero, E., and Morata, G. 1988. Developmental analysis of a hybrid gene composed of parts of the Ubx and abd-A genes of Drosophila. EMBO Journal 7:10971105.CrossRefGoogle ScholarPubMed
Castelli-Gair, J., and Akam, M. 1995. How the Hox gene Ultrabithorax specifies two different segments: the significance of spatial and temporal regulation within metameres. Development 121:29732982.CrossRefGoogle ScholarPubMed
Castelli-Gair, J., Greig, S., Micklem, G., and Akam, M. 1994. Dissecting the temporal requirement for homeotic gene function. Development 120:19831995CrossRefGoogle ScholarPubMed
Chang, W. T., Lu, Y., Zhu, Z., Qian, Y., Lin, H., Zhou, Z., Chang, S., and Yuan, J. 1980. Cambrian trilobite faunas of southwestern China. Nanjing Institute of Geology and Palaeontology, Academia Sinica, Nanjing. [In Chinese with English summary.]Google Scholar
Chatterton, B. D. E., and Ludvigsen, R. 1998. Upper Steptoean (Upper Cambrian) trilobites from the McKay Group of southeastern British Columbia, Canada. Journal of Paleontology Memoir 49:143.Google Scholar
Cisne, J. L. 1975. Anatomy of Triarthrus and the relationship of the trilobites. Fossil and Strata 4:4563.CrossRefGoogle Scholar
DeSalle, R., and Carew, E. 1992. Phyletic phenocopy and the role of developmental genes in morphological evolution in Drosophilidae. Journal of Evolutionary Biology 5:363374.CrossRefGoogle Scholar
Dick, M. H. 1997. Hox genes and annelid—arthropod relationships. In Fortey, R. A. and Thomas, R. H., eds. Arthropod relationships. Systematics Association Special Volume 55:3541. Chapman and Hall, LondonGoogle Scholar
Dick, M. H., and Buss, L. W. 1994. A PCR based survey of homeobox genes in Ctenodrilus serratus (Annelida: Polychaeta). Molecular Phylogenetics and Evolution 3:146158.CrossRefGoogle ScholarPubMed
Erwin, D. H. 1999. The origin of bodyplans. American Zoology 39:617629.CrossRefGoogle Scholar
Gellon, G., and McGinnis, W. 1998. Shaping animal body plans in development and evolution by modulation of Hox expression patterns. BioEssays 20:116125.3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Grenier, J. K., Garber, T. L., Warren, R., Whitington, P. M., and Carroll, S. 1997. Evolution of the entire arthropod Hox gene set predated the origin and radiation of the onychophoran/arthropod clade. Current Biology 7:547553.CrossRefGoogle ScholarPubMed
Harrington, H. J., Henningsmoen, G., Howell, B. F., Jaanusson, V., Lochman-Balk, C., Moore, R. C., Poulsen, C., Rasetti, F., Richter, E., Richter, R., Schmidt, H., Sdzuy, K., Struve, W., Størmer, Leif, Stubblefield, C. J., Tripp, R., Weller, J. M. and Whittington, H. B. 1959. Arthropoda 1. Part O ofMoore, R. C., ed. Treatise on invertebrate paleontology. Geological Society of America and University of Kansas Press, New York.Google Scholar
Hooper, J. E. 1986. Homeotic gene function in the muscles of Drosophila larvae. EMBO Journal 5:23212329.CrossRefGoogle ScholarPubMed
Hughes, N. C., and Chapman, R. E. 1995. Growth and variation in the Silurian proetide trilobite Aulacopleura konincki and its implications for trilobite palaeobiology. Lethaia 28:333353.CrossRefGoogle Scholar
Jacobs, D. K. 1987. Homeotic mutants and the higher metazoan Bauplan: inferences in phylogeny, evolution and paleontology. Geological Society of America Abstracts with Programs 19:714.Google Scholar
Jacobs, D. K. 1990. Selector genes and the Cambrian radiation of Bilateria. Proceedings of the National Academy of Sciences USA 87:44064410.CrossRefGoogle ScholarPubMed
Lawrence, P. A. 1992. The making of a fly: the genetics of animal design. Blackwell Scientific, Oxford.Google Scholar
Lewis, E. B. 1978. A gene complex controlling segmentation in Drosophila. Nature 276:565570.CrossRefGoogle ScholarPubMed
Levi-Setti, R. 1993. Trilobites, 2d ed.University of Chicago Press, Chicago.Google Scholar
Lieberman, B. S. 1998. Cladistic analysis of the Early Cambrian olenelloid trilobites. Journal of Paleontology 72:5978.CrossRefGoogle Scholar
Ludvigsen, R., Westrop, S. R., and Kindle, C. H. 1989. Sunwaptan (Upper Cambrian) trilobites of the Cow Head Group, western Newfoundland, Canada. Palaeontographica Canadiana 6.Google Scholar
Manak, J. R., and Scott, M. P. 1994. A class act: conservation of homeodomain protein functions. Development 1994(Suppl.):6171.CrossRefGoogle Scholar
McNamara, K. J. 1986. The hole of heterochrony in the evolution of Cambrian trilobites. Biological Review 61:121156.CrossRefGoogle Scholar
Melzak, A., and Westrop, S. R. 1994. Mid-Cambrian (Marjuman) trilobites from the Pika Formation, southern Canadian Rocky Mountains, Alberta. Canadian Journal of Earth Sciences 31:969985.CrossRefGoogle Scholar
Palmer, A. R. 1968. Cambrian trilobites of east central Alaska. United States Geology Survey Professional Paper 559-B.CrossRefGoogle Scholar
Palmer, A. R. 1998. Terminal Early Cambrian extinction of the Olenellina: documentation from the Pioche Formation, Nevada. Journal of Paleontology 72:650672.CrossRefGoogle Scholar
Palmer, A. R., and Repina, L. N. 1993. Through a glass darkly: taxonomy, phylogeny, and biostratigraphy of the Olenellina. University of Kansas Paleontological Contributions, new series 3:135.Google Scholar
Pultz, M. A., Diederich, R. J., Cribbs, D. L., and Kaufman, T. C. 1988. The proboscipedia locus of the Antennapedia Complex: a molecular and genetic analysis. Genes and Development 2:901920.CrossRefGoogle ScholarPubMed
Raff, R. A., 1996. The shape of life: genes, development, and the evolution of animal form. University of Chicago Press, Chicago.CrossRefGoogle Scholar
Raff, R. A., and Kaufman, T. C. 1983. Embryos, genes, and evolution. Macmillan, New York.Google Scholar
Rasetti, F. 1951. Middle Cambrian stratigraphy and faunas of the Canadian Rocky Mountains. Smithsonian Miscellaneous Collections 116(5):1277.Google Scholar
Robison, R. A. 1964. Late Middle Cambrian faunas from western Utah. Journal of Paleontology 38:510566.Google Scholar
Robison, R. A. 1971. Additional Middle Cambrian trilobites from the Wheeler Shale of Utah. Journal of Paleontology 45:796804.Google Scholar
Robison, R. A. 1988. Trilobites of the Holm Dal Formation (late Middle Cambrian) central North Greenland. Meddelelser om Grønland Geoscience 20:23103.CrossRefGoogle Scholar
Rosa, R., Grenier, J. K., Andreeva, T., Cook, C. E., Adoutte, A., Akam, M., Carroll, S. B., and Balavoine, G. 1999. Hox genes in brachiopods and priapulids and protostome evolution. Nature 399:772776.CrossRefGoogle ScholarPubMed
Schwimmer, D. R. 1973. The Middle Cambrian biostratigraphy of Montana and Wyoming. . State University of New York, Stony Brook.Google Scholar
Shergold, J. H. 1969. Oryctocephalidae (Trilobita: Middle Cambrian) of Australia. Bureau of Mineral Resources, Geology and Geophysics, Bulletin 104:166.Google Scholar
Snow, P., and Buss, L. W. 1994. HOM/Hox-type homeoboxes from Stylaria lacustris (Annelida: Oligochaeta). Molecular Phylogenetics and Evolution 3:360364.CrossRefGoogle ScholarPubMed
Stebbins, G. L., and Basile, D. V. 1986. Phyletic phenocopies: a useful technique for probing the genetic and developmental basis of evolutionary change. Evolution 40:422425.CrossRefGoogle ScholarPubMed
Sundberg, F. A. 1995. Arthropod pattern theory and Cambrian trilobites. Bijdragen tot de Dierkunde 64:192213.CrossRefGoogle Scholar
Sundberg, F. A., and McCollum, L. B. 1997. Oryctocephalids (Corynexochida: Trilobita) of the Lower-Middle Cambrian boundary interval from California and Nevada. Journal of Paleontology 71:10651090.CrossRefGoogle Scholar
Tchernysheva, N. E. 1962. Kembriiske trilobity Semeistva Oryctocephalidae. In Problemy Neftegazonosnosti Sovetskoi Arktiki Paleontologiya i Biostratigrafiya 3. Trudy nauchno-issledovatel'skii geologo-razvedochnyi neftianoi Institut Arktiki 127:352.Google Scholar
Valentine, J. F., Jablonski, D., and Erwin, D. H. 1999. Fossils, molecules and embryos: new perspectives on the Cambrian explosion. Development 126:851859.CrossRefGoogle ScholarPubMed
Whiting, M. F., and Wheeler, W. C. 1994. Insect homeotic transformation. Nature 368:696.CrossRefGoogle Scholar
Whittington, H. B. 1995. Oryctocephalid trilobites from the Cambrian of North America. Palaeontology 38:543562.Google Scholar
Wills, M. A., Briggs, D. E. G., and Fortey, R. A. 1994. Disparity as an evolutionary index: a comparison of Cambrian and Recent arthropods. Paleobiology 20:93130.CrossRefGoogle Scholar
Wills, M. A. 1997. Evolutionary correlates of arthropod tagmosis: scrambled legs. In Fortey, R. A. and Thomas, R. H., eds. Arthropod relationships. Systematics Association Special Volume 55:5765. Chapman and Hall, London.Google Scholar