Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T23:58:35.552Z Has data issue: false hasContentIssue false

Local and global abundance associated with extinction risk in late Paleozoic and early Mesozoic gastropods

Published online by Cambridge University Press:  08 April 2016

Jonathan L. Payne
Affiliation:
Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305. E-mail: jlpayne@stanford.edu
Sarah Truebe
Affiliation:
Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305
Alexander Nützel
Affiliation:
Bayerische Staatssammlung für Paläontologie und Geologie, Ludwig-Maximilians-University Munich, Department für Geo- und Umweltwissenschaften, Sektion für Paläontologie, Geobiocenter LMU, Richard Wagner Strasse 10, Munich 80333, Germany
Ellen T. Chang
Affiliation:
Division of Epidemiology, Department of Health Research and Policy, Stanford University School of Medicine, Stanford, California 94305 Cancer Prevention Institute of California, 2201 Walnut Avenue, Suite 300, Fremont, California 94538

Abstract

Ecological theory predicts an inverse association between population size and extinction risk, but most previous paleontological studies have failed to confirm this relationship. The reasons for this discrepancy between theory and observation remain poorly understood. In this study, we compiled a global database of gastropod occurrences and collection-level abundances spanning the Early Permian through Early Jurassic (Pliensbachian). Globally, the database contains 5469 occurrences of 496 genera and 2156 species from 839 localities. Within the database, 30 collections distributed across seven stages contain at least 75 specimens and ten genera—our minimum criteria for within-collection analysis of extinction selectivity. We use logistic regression analysis, based on global and local measures of population size and stage-level extinction patterns in Early Permian through Early Jurassic marine gastropods, to assess the relationship between abundance and extinction risk. We find that global genus occurrence frequency is inversely associated with extinction risk (i.e., positively associated with survival) in 15 of 16 stages examined, statistically significantly so in five stages. Although correlation between geographic range and occurrence frequency may account for some of this association, results from multivariable regression analysis suggest that the association between occurrence frequency and extinction risk is largely independent of geographic range. Within local assemblages, abundance (number of individuals) is also inversely associated with extinction risk. The strength of association is consistent across time and modes of fossil preservation. Effect strength is poorly constrained, particularly in analyses of local collections. In addition to limited power due to small sample size, this poor constraint may result from confounding by ecological variables not controlled for in the analyses, by taphonomic or collection biases, or from non-monotonic relationships between abundance and extinction risk. Two factors are likely to account for the difference between our results and those of most previous studies. First, many previous studies focused on the end-Cretaceous mass extinction event; the extent to which these results can be generalized to other intervals remains unclear. Second, previous findings of nonselective extinction could result from insufficient statistical power rather than the absence of an underlying effect, because nonselective extinction is generally used as the null hypothesis for statistical convenience. Survivorship patterns in late Paleozoic and early Mesozoic gastropods suggest that abundance has been a more important influence on extinction risk through the Phanerozoic than previously appreciated.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fürsich, F. T., Harries, P. J., Hendy, A. J. W., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bonuso, N., Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Nurnberg, S., Powers, C. M., Sessa, J. A., Simpson, C., Tomašových, A., and Visaggi, C. C. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97100.CrossRefGoogle ScholarPubMed
Bambach, R. K. 2006. Phanerozoic biodiversity mass extinctions. Annual Review of Earth and Planetary Sciences 34:127155.Google Scholar
Bandel, K. 1994. Triassic Euthyneura (Gastropoda) from the St. Cassian Formation (Italian Alps) with a discussion on the evolution of the Heterostropha. Freiberger Forschungshefte C 452:79100.Google Scholar
Batten, R. L. 1958. Permian Gastropoda of the southwestern United States, Part 2. Pleurotomariacea, Portlockiellidae, Phymatopleuridae, and Eotomariidae. American Museum of Natural History Bulletin 114:153246.Google Scholar
Batten, R. L. 1972. Permian gastropods and chitons from Perak, Malaysia. American Museum of Natural History Bulletin 147:144.Google Scholar
Batten, R. L. 1979. Gastropods from Perak, Malaysia, Part 2. The trochids, patellids, and neritids. American Museum Novitates 2685:126.Google Scholar
Batten, R. L. 1985. Permian gastropods from Perak, Malaysia, Part 3. The murchisoniids, cerithids, loxonematids, and subulitids. American Museum Novitates 2829:140.Google Scholar
Batten, R. L. 1989. Permian Gastropoda of the southwestern United States. 7. Pleurotomariacea: Eotomariidae, Lophostiridae, Gosseletinidae. American Museum Novitates 2829:140.Google Scholar
Blaschke, F. 1905. Die Gastropodenfauna der Pachycardientuffe der Seiseralpe in Südtirol nebst einem Nachtrag zur Gastropodenfauna der roten Raibler Schichten vom Schlernplateau. Beiträge zur Paläontologie und Geologie Österreich-Ungarns und des Orients 17.Google Scholar
Brown, J. H. 1984. On the relationship between abundance and distribution of species. American Naturalist 124:255.Google Scholar
Brown, J. H. 1995. Macroecology. University of Chicago Press, Chicago.Google Scholar
Buzas, M. A., Koch, C. F., Culver, S. J., and Sohl, N. F. 1982. On the distribution of species occurrence. Paleobiology 8:143150.Google Scholar
Clapham, M. E., Shen, S., and Bottjer, D. J. 2009. The double mass extinction revisited: reassessing the severity, selectivity, and causes of the end-Guadalupian biotic crisis (Late Permian). Paleobiology 35:3250.Google Scholar
Cohen, J. E., Jonsson, T., and Carpenter, S. R. 2003. Ecological community description using the food web, species abundance, and body size. Proceedings of the National Academy of Sciences USA 100:1781.Google Scholar
Cooper, R. A., Maxwell, P. A., Crampton, J. S., Beu, A. G., Jones, C. M., and Marshall, B. A. 2006. Completeness of the fossil record: estimating losses due to small body size. Geology 34:241244.Google Scholar
Daley, R. L., and Boyd, D. W. 1996. The role of skeletal microstructure during selective silicification of brachiopods. Journal of Sedimentary Research 66:155162.Google Scholar
Dubar, G. 1948. Faune domérienne du Jebel Bou-Dahar, près de Beni-Tajite. Etudes paléontologiques sur le Lias du Maroc. Notes et Mémoires du Service Géologique du Maroc 68:1247.Google Scholar
Erwin, D. H. 1988a. Permian Gastropoda of the southwestern United States: Subulitacea. Journal of Paleontology 62:5669.Google Scholar
Erwin, D. H. 1988b. Permian Gastropoda of the southwestern United States: Cerithiacea, Acteonacea, and Pyramidellacea. Journal of Paleontology 62:566575.Google Scholar
Erwin, D. H. 1988c. The Genus Glyptospira (Gastropoda, Trochacea) from the Permian of the southwestern United States. Journal of Paleontology 62:868879.Google Scholar
Erwin, D. H. 1989. Regional paleoecology of Permian gastropod genera, southwestern United States and the end-Permian mass extinction. Palaios 4:424438.CrossRefGoogle Scholar
Finnegan, S., Payne, J. L., and Wang, S. C. 2008. The Red Queen revisited: reevaluating the age selectivity of Phanerozoic marine genus extinctions. Paleobiology 34:318341.Google Scholar
Flessa, K. W., and Brown, T. J. 1983. Selective solution of macroinvertebrate calcareous hard parts: a laboratory study. Lethaia 16:193205.Google Scholar
Foote, M. 2005. Pulsed origination and extinction in the marine realm. Paleobiology 31:620.Google Scholar
Foote, M. 2007. Extinction and quiescence in marine animal genera. Paleobiology 33:261272.Google Scholar
Foote, M., Crampton, J. S., Beu, A. G., and Cooper, R. A. 2008. On the bidirectional relationship between geographic range and taxonomic duration. Paleobiology 34:421433.Google Scholar
Friedman, M. 2009. Ecomorphological selectivity among marine teleost fishes during the end-Cretaceous extinction. Proceedings of the National Academy of Sciences USA 106:52185223.Google Scholar
Haas, O. 1953. Mesozoic invertebrate faunas of Peru. Part 1, General introduction; Part 2, Late Triassic gastropods from central Peru. American Museum of Natural History Bulletin 101:1328.Google Scholar
Hallam, A., and Wignall, P. B. 1997. Mass extinctions and their aftermaths. Oxford University Press, New York.Google Scholar
Hendy, A. J. W. 2009. The influence of lithification on Cenozoic marine biodiversity trends. Paleobiology 35:5162.Google Scholar
Hosmer, D. W., and Lemeshow, S. 2000. Applied logistic regression. Wiley, New York.Google Scholar
Hotton, C. L. 2002. Palynology of the Cretaceous-Tertiary boundary in central Montana: evidence for extraterrestrial impact as a cause of the terminal Cretaceous extinctions. In Hartman, J. H., Johnson, K. R., and Nichols, D. J., eds. The Hell Creek Formation and the Cretaceous-Tertiary boundary in the northern Great Plains: an integrated continental record of the end of the Cretaceous. Geological Society of America Special Paper 361:473502.Google Scholar
Hubbell, S. P. 2001. The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton, N.J.Google Scholar
Hunt, G. 2006. Fitting and comparing models of phyletic evolution: random walks and beyond. Paleobiology 32:578601.Google Scholar
Jablonski, D. 1986. Background and mass extinctions—the alternation of macroevolutionary regimes. Science 231:129133.Google Scholar
Jablonski, D. 2005. Mass extinctions and macroevolution. In Vrba, E. S. and Eldredge, N., eds. Macroevolution: diversity, disparity, contingencyPaleobiology 31(Suppl. to No. 3):192210.CrossRefGoogle Scholar
Jablonski, D., and Finarelli, J. A. 2009. Congruence of morphologically defined genera within molecular phylogenies. Proceedings of the National Academy of Sciences USA 106:82628266.Google Scholar
Jablonski, D., and Raup, D. M. 1995. Selectivity of end-Cretaceous marine bivalve extinctions. Science 268:389391.Google Scholar
Johnson, J. B., and Omland, K. S. 2004. Model selection in ecology and evolution. Trends in Ecology and Evolution 19:101108.Google Scholar
Kidwell, S. M. 2001. Preservation of species abundance in marine death assemblages. Science 294:10911094.Google Scholar
Kidwell, S. M. 2002. Time-averaged molluscan death assemblages: palimpsests of richness, snapshots of abundance. Geology 30:803806.Google Scholar
Kiessling, W., and Aberhan, M. 2007. Geographic distribution and extinction risk: lessons from Triassic-Jurassic marine benthic organisms. Journal of Biogeography 34:14731489.Google Scholar
Kiessling, W., and Baron-Szabo, R. 2004. Extinction and recovery patterns of scleractinian corals at the Cretaceous-Tertiary boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 214:195223.Google Scholar
Kittl, E. 1891. Die Gastropoden der Schichten von St. Cassian der südalpinen Trias. I. Theil. Annalen des Kaiserlich-Königlichen Naturhistorischen Hofmuseums 6:166262.Google Scholar
Kittl, E. 1912. Trias-Gastropoden des Bakonyer Waldes. Resultate der wissenschaftlichen Erforschung des Balatonsees, Vol 2, section 5, pp. 158.Google Scholar
Knoll, A. H., Bambach, R. K., Canfield, D. E., and Grotzinger, J. P. 1996. Comparative earth history and Late Permian mass extinction. Science 273:452457.Google Scholar
Knoll, A. H., Bambach, R. K., Payne, J. L., Pruss, S., and Fischer, W. W. 2007. Paleophysiology and end-Permian mass extinction. Earth and Planetary Science Letters 256:295313.Google Scholar
Koken, E. 1897. Gastropoden der Trias um Hallstadt. Abhandlungen der Kaiserlich Koniglichen Geologischen Reichsanstalt 17:1111.Google Scholar
Kosnik, M. A., Hua, Q., Kaufman, D. S., and Wust, R. A. 2009. Taphonomic bias and time-averaging in tropical molluscan death assemblages: differential shell half-lives in Great Barrier Reef sediment. Paleobiology 35:565586.Google Scholar
Kutassy, A. 1927. Beiträge zur Stratigraphie und Paläontologie der alpinen Triasschichten in der Umgebung von Budapest. Magyar kir. Földtani Intézet Évkönyve 27:105177.Google Scholar
Lande, R. 1993. Risks of population extinction from demographic and environmental stochasticity and random catastrophes. The American Naturalist 142:911927.Google Scholar
Leighton, L. R., and Schneider, C. L. 2008. Taxon characteristics that promote survivorship through the Permian-Triassic interval: transition from the Paleozoic to the Mesozoic brachiopod fauna. Paleobiology 34:6579.Google Scholar
Leonardi, P., and Fiscon, F. 1959. La fauna Cassiana di Cortina d'Ampezzo. 3. Gasteropodi. Memorie degli Insituti de Geologia e Mineralogia dell'Università di Padova 21:1103.Google Scholar
Lockwood, R. 2003. Abundance not linked to survival across the end-cretaceous mass extinction: Patterns in North American bivalves. Proceedings of the National Academy of Sciences USA 100:24782482.Google Scholar
McClure, M., and Bohonak, A. J. 1995. Non-selectivity in extinction of bivalves in the Late Cretaceous of the Atlantic and Gulf Coastal Plain of North America. Journal of Evolutionary Biology 8:779794.Google Scholar
McKinney, M. L. 1997. Extinction vulnerability and selectivity: combining ecological and paleontological views. Annual Review of Ecology and Systematics 28:495516.Google Scholar
Nützel, A. 2005. A new Early Triassic gastropod genus and the recovery of gastropods from the Permian/Triassic extinction. Acta Palaeontologica Polonica 50:1924.Google Scholar
Nützel, A., and Erwin, D. H. 2004. Late Triassic (Late Norian) gastropods from the Wallowa Terrane (Idaho, USA). Paläontologische Zeitschrift 78:361416.Google Scholar
Pan, H.-Z., and Erwin, D. H. 2002. Gastropods from the Permian of Guangxi and Yunnan provinces, south China. Journal of Paleontology Memoir 56:149.Google Scholar
Payne, J. L., and Finnegan, S. 2007. The effect of geographic range on extinction risk during background and mass extinction. Proceedings of the National Academy of Sciences USA 104:1050610511.Google Scholar
Peduzzi, P., Concato, J., Kemper, E., Holford, T. R., and Feinstein, A. R. 1996. A simulation study of the number of events per variable in logistic regression analysis. Journal of Clinical Epidemiology 49:13731379.Google Scholar
Pimm, S. L., Jones, H. L., and Diamond, J. 1988. On the risk of extinction. American Naturalist 132:757.Google Scholar
Plotnick, R. E., and Wagner, P. J. 2006. Round up the usual suspects: common genera in the fossil record and the nature of wastebasket taxa. Paleobiology 32:126146.Google Scholar
Powell, M. G. 2008. Timing and selectivity of the Late Mississippian mass extinction of brachiopod genera from the Central Appalachian Basin. Palaios 23:525534.Google Scholar
Raup, D. M. 1991a. Extinction: bad genes or bad luck? W.W. Norton, New York.Google Scholar
Raup, D. M. 1991b. A kill curve for Phanerozoic marine species. Paleobiology 17:3748.Google Scholar
Sachariewa-Kowatschewa, K. 1961. Die Trias von Kotel (Ost-Balkan). II. Teil. Scaphopoden und Gastropoden. Annuaire de l'Université de Sofia, Faculté de Biologie, Géologie et Géographic Livre 2, Géologie 55:91140.Google Scholar
Scotese, C. R. 2007. Point Tracker, Version 2.0d. Department of Geology, University of Texas, Austin.Google Scholar
Sepkoski, J. J. 2002. A compendium of fossil marine animal genera. Bulletins of American Paleontology 363:1560.Google Scholar
Sessa, J. A., Patzkowsky, M. E., and Bralower, T. J. 2009. The impact of lithification on the diversity, size distribution, and recovery dynamics of marine invertebrate assemblages. Geology 37:115118.Google Scholar
Simpson, C., and Harnik, P. G. 2009. Assessing the role of abundance in marine bivalve extinction over the post-Paleozoic. Paleobiology 35:631647.Google Scholar
Smith, A. B., and Jeffery, C. H. 1998. Selectivity of extinction among sea urchins at the end of the Cretaceous period. Nature 392:6971.Google Scholar
Stanley, S. M. 1986. Population size, extinction, and speciation: the fission effect in Neogene Bivalvia. Paleobiology 12:89110.Google Scholar
Wagner, P. J., Aberhan, M., Hendy, A., and Kiessling, W. 2007. The effects of taxonomic standardization on sampling-standardized estimates of historical diversity. Proceedings of the Royal Society of London B 274:439444.Google Scholar
Wang, S. C., and Bush, A. M. 2008. Adjusting global extinction rates to account for taxonomic susceptibility. Paleobiology 34:434455.Google Scholar
Wilf, P., and Johnson, K. R. 2004. Land plant extinction at the end of the Cretaceous: a quantitative analysis of the North Dakota megafloral record. Paleobiology 30:347368.Google Scholar
Yochelson, E. L. 1956. Permian Gastropoda of the southwestern United States. 1. Euomphalacea, Trochonematacea, Pseudophoracea, Anomphalacea, Craspedostomatacea, and Platyceratacea. American Museum of Natural History Bulletin 110:173276.Google Scholar
Yochelson, E. L. 1960. Permian Gastropoda of the southwestern United States, Part 3. Bellerophontacea and Patellacea. American Museum of Natural History Bulletin 119:205294.Google Scholar
Zardini, R. 1978. Fossili Cassiani (Trias medio-superiore) Atlante dei Gasteropodi della Formazione di S. Cassiano Raccolti nella Regione Dolomitica Attorno a Cortina d'Ampezzo. Ed Ghedina, Cortina d'Ampezzo.Google Scholar