Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T20:18:21.720Z Has data issue: false hasContentIssue false

Mass turnover and heterochrony events in response to physical change

Published online by Cambridge University Press:  08 April 2016

Elisabeth S. Vrba*
Affiliation:
Department of Geology and Geophysics, Yale University, Post Office Box 208109, New Haven, Connecticut 06520-8109. E-mail: elisabeth.vrba@yale.edu

Abstract

The thoughts and writings of Stephen Jay Gould have had an enormous impact on the shaping of macroevolutionary theory. The notion of punctuated equilibria (Eldredge and Gould 1972) remained prominent throughout his work. It also unleashed a storm of debate in paleontology and evolutionary theory. A second theme that recurs throughout Gould's opus is heterochrony (evolution by changes in the rates and timing of ontogenetic events, sensu Gould 1977a). His analyses of these two subjects have inspired many of us to explore further and add to them. My contribution discusses their expansion to encompass large numbers of lineages through long time, and the relationship of punctuated equilibria and heterochrony to physical environmental change, and to each other.

Type
Macroevolutionary Patterns within and among Clades
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alberch, P. 1980. Ontogenesis and morphological diversification. American Zoologist 20:653667.Google Scholar
Allen, J. A. 1877. The influence of physical conditions in the genesis of species. Radical Review 1:108140.Google Scholar
Archer, M., Head, S. J., and Godthelp, H. 1995. Tertiary environmental and biotic change in Australia. Pp. 7790in Vrba, et al. 1995.Google Scholar
Arnold, S. J., Alberch, P., Csanyi, V., Dawkins, R. C., Emerson, S., Fritzsche, B., Horder, T. J., Maynard-Smith, J., Starck, M., and Vrba, E. S., Wagner, G. P., and Wake, D. B. 1989. How do complex organisms evolve? Pp. 403433s in Wake, D. B. and Roth, G., eds. Complex organismal functions: integration and evolution in vertebrates. Wiley, Chichester, U.K.Google Scholar
Asfaw, P., White, T., Lovejoy, O., Latimer, B., Simpson, S., and Suwa, G. 1999. Australopithecus garhi: a new species of early hominid from Ethiopia. Science 284:629635.Google Scholar
Ashton, K. G., Tracy, M. C., and de Queiroz, A. 2000. Is Bergmann's rule valid for mammals? American Naturalist 156:390415.Google Scholar
Azzaroli, A. 1995. The “Elephant-Equus” and the “End-Villafranchian” Events in Eurasia. Pp. 311318in Vrba, et al. 1995.Google Scholar
Barnosky, A. D. 1986. Big game extinction caused by Late Pleistocene climatic change: Irish Elk (Megaloceros giganteus) in Ireland. Quaternary Research 25:128135.Google Scholar
Barnosky, A. D. 2001. Distinguishing the effects of the Red Queen and Court Jester on Miocene mammal evolution in the northern Rocky Mountains. Journal of Vertebrate Paleontology 21:162185.Google Scholar
Barry, J. C. 1995. Faunal turnover and diversity in the terrestrial Neogene of Pakistan. Pp. 115134in Vrba, et al. 1995.Google Scholar
Behrensmeyer, A. K., Todd, N. E., Potts, R., and McBrinn, G. E. 1997. Late Pliocene faunal turnover in the Turkana Basin, Kenya and Ethiopia. Science 278:637640.Google Scholar
Bennett, K. D. 1996. Ecology and evolution: the pace of life. Cambridge University Press, Cambridge.Google Scholar
Bergmann, C. 1847. Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Studien 31:595708.Google Scholar
Bernor, R. L., and Lipscomb, D. 1995. A consideration of Old World Hipparionine horse phylogeny and global abiotic processes. Pp. 164177in Vrba, et al. 1995.Google Scholar
Brett, C. E., and Baird, G. C. 1995. Coordinated stasis and evolutionary ecology of Silurian to Middle Devonian faunas in the Appalachian Basin. Pp. 285315in Erwin, D. H. and Anstey, R. L., eds. New approaches to speciation in the fossil record. Columbia University Press, New York.Google Scholar
Brooks, D., and McLennan, D. 1991. Phylogeny, ecology, and behavior. University of Chicago Press, Chicago.Google Scholar
Bush, G. L. 1975. Modes of animal speciation. Annual Review of Ecology and Systematics 6:339364.Google Scholar
Carson, H. L. 1982. Speciation as a major reorganization of polygenic balances. Pp. 411433in Barigozzi, C., ed. Mechanisms of speciation. Liss, New York.Google Scholar
Carson, H. L. 1987. The process whereby species originate. BioScience 37:715720.Google Scholar
Carson, H. L., Hardy, D. E., Spieth, H. T., and Stone, W. S. 1970. The evolutionary biology of the Hawaiian Drosophilidae. Pp. 437543in Hecht, M. K. and Steere, W. C., eds. Essays in evolution and genetics in honor of Theodosius Dobzhansky. Appleton-Century-Crofts, New York.Google Scholar
Count, E. W. 1947. Brain and body weight in man. Annals of the New York Academy of Science 46:9931122.Google Scholar
Darwin, C. 1859. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London.Google Scholar
Davis, S. J. 1981. The effects of temperature change and domestication on the body size of Late Pleistocene to Holocene mammals of Israel. Paleobiology 7:101114.Google Scholar
DeMenocal, P., and Bloemendal, J. 1995. Plio-Pleistocene subtropical African climate variability and the paleoenvironment of hominid evolution: a combined data-model approach. Pp. 262288in Vrba, et al. 1995.Google Scholar
Denys, C. 1999. Of mice and men: evolution in East and South Africa during Plio-Pleistocene times. Pp. 226252in Bromage, T. G. and Schrenk, F., eds. African biogeography, climate change, and human evolution. Oxford University Press, New York.Google Scholar
Dieckmann, U., and Doebeli, M. 1999. On the origin of species by sympatric speciation. Journal of Nature 400:354357.Google Scholar
Dupont, L. M., and Leroy, S. A. 1995. Steps towards drier climatic conditions in North-Western Africa during the Upper Pliocene. Pp. 289298in Vrba, et al. 1995.Google Scholar
Eldredge, N., and Gould, S. J. 1972. Punctuated equilibria: an alternative to phyletic gradualism. Pp. 82115in Schopf, T. J. M., ed. Models in paleobiology. W. H. Freeman, San Francisco.Google Scholar
Eldredge, N., Thompson, J. N., Brakefield, P. M., Gavrilets, S., Jablonski, D., Jackson, J. B. C., Lenski, R. E., Lieberman, B. S., McPeek, M. A., and Miller, W. III. 2005. The dynamics of evolutionary stasis. [This volume.]Google Scholar
Falkner, F., and Tanner, J. M., eds. 1986. Human growth: a comprehensive treatise, Vols. 1, 2. Plenum, New York.Google Scholar
Foley, R. A. 1994. Speciation, extinction and climatic change in hominid evolution. Journal of Human Evolution 26:275289.Google Scholar
Fortey, R. A., Briggs, D. E. G., and Wills, M. A. 1997. The Cambrian evolutionary explosion recalibrated. BioEssays 19:429434.Google Scholar
Futuyma, D. J., and Mayer, G. C. 1980. Non-allopatric speciation in animals. Journal of Systematic Zoology 29:254271.CrossRefGoogle Scholar
Gould, S. J. 1974. The evolutionary significance of “bizarre” structures: antler size and skull size in the “Irish Elk,” Megaloceros giganteus. Journal of Evolution 28:191220.Google Scholar
Gould, S. J. 1977a. Ontogeny and phylogeny. Harvard University Press, Cambridge.Google Scholar
Gould, S. J. 1977b. Eternal metaphors of Paleontology. Pp. 126in Hallam, A., ed. Patterns of evolution. Elsevier, Amsterdam.Google Scholar
Gould, S. J. 1979. On the importance of heterochrony for evolutionary biology. Systematic Zoology 28:224226.Google Scholar
Gould, S. J. 1984. Morphological channeling by structural constraint: convergence in styles of dwarfing and gigantism in Cerion, with a description of two new fossil species and a report on discovery of the largest Cerion. Paleobiology 10:172194.Google Scholar
Gould, S. J. 1988. The uses of heterochrony. Pp. 113in McKinney, M. L., ed. Heterochrony in evolution. Plenum, New York.Google Scholar
Gould, S. J. 2002. The structure of evolutionary theory. Harvard University Press, Cambridge.Google Scholar
Graham, R. W., and Lundelius, E. L. 1984. Coevolutionary disequilibrium and Pleistocene extinctions. Pp. 223249in Martin, P. S. and Klein, R. G., eds. Quaternary extinctions: a prehistoric revolution. University of Arizona Press, Tucson.Google Scholar
Gulick, J. T. 1872. On the variation of species as related to their geographical distribution, illustrated by the Achatinellidae. Journal of Nature 6:222224.Google Scholar
Guthrie, R. D. 1984. Alaskan megabucks, megabulls, and megarams: the issue of Pleistocene gigantism. Bulletin of the Carnegie Museum of Natural History 8:482510.Google Scholar
Hafner, J. C., and Hafner, M. S. 1988. Heterochrony in rodents. Pp. 217235in McKinney, M. L., ed. Heterochrony in evolution: a multidisciplinary approach. Plenum, New York.Google Scholar
Hall, B. K. 2001. Organic selection: Proximate environmental effects on the evolution of morphology and behaviour. Journal of Biology and Philosophy 16:215237.Google Scholar
Hall, B. K., Pearson, R. D., and Muller, G. B., eds. 2004. Perspectives from the fossil record: environment, development, and evolution. MIT Press, Cambridge.Google Scholar
Haq, B. U., Hardenbol, J., and Vail, P. R. 1987. Chronology of fluctuating sea levels since the Triassic. Science 235:11561167.Google Scholar
Heintz, A., and Garutt, V. E. 1965. Determination of the absolute age of the fossil remains of mammoth and wooly rhinoceros from the permafrost in Siberia by the help of radiocarbon (C14). Norsk Geologisk Tidsskrift 45:7379.Google Scholar
Hodell, D. A., and Warnke, D. A. 1991. Climatic evolution of the Southern-Ocean during the Pliocene Epoch from 4.8 million to 2.6 million years ago. Quaternary Science Reviews 10(2–3):205214.Google Scholar
Hoffman, A. 1989. Arguments on evolution. Oxford University Press, Oxford.Google Scholar
Holt, A., Cheek, D., Mellits, E., and Hill, D. 1975. Brain size and the relation of the primate to the nonprimate. Pp. 2344in Cheek, D., ed. Foetal and postnatal cellular growth: hormones and nutrition. Wiley, New York.Google Scholar
Janis, C. M. 1993. Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annual Review of Ecology and Systematics 24:467500.Google Scholar
Kurtén, B. 1959. On the bears of the Holsteinian Interglacial. Stockholm Contributions in Geology 2:73102.Google Scholar
Lavocat, R. 1978. Rodentia and Lagomorpha. Pp. 6989in Maglio, V. J. and Cooke, H. B. S., eds. Evolution of African mammals. Harvard University Press, Cambridge.Google Scholar
Lieberman, B. S., Brett, C. E., and Eldredge, N. 1995. A study of stasis and change in two species lineages from the Middle Devonian of New York State. Paleobiology 21:1527.Google Scholar
Mayr, E. 1942. Systematics and the origin of species. Columbia University Press, New York.Google Scholar
Mayr, E. 1963. Animal species and evolution. Harvard University Press, Cambridge.Google Scholar
McKee, J. K. 1993. Formation and geomorphology of caves in calcareous tufas and implications for the study of the Taung fossil deposits. Transactions of the Royal Society of South Africa 48:307322.Google Scholar
McKinney, M. L., and McNamara, K. J. 1991. Heterochrony: the evolution of ontogeny. Plenum, New York.Google Scholar
McKinnon, J. S., and Rundle, H. D. 2002. Speciation in nature: the threespine stickleback model systems. Trends in Ecology and Evolution 17:480488.Google Scholar
Meiri, S., and Dayan, T. 2003. On the validity of Bergmann's rule. Journal of Biogeography 30:331351.Google Scholar
Partridge, T. C., and Maud, R. R. 1987. South African Journal of Geology 90:179208.Google Scholar
Paterson, H. E. H. 1978. More evidence against speciation by reinforcement. South African Journal of Science 74:369371.Google Scholar
Paterson, H. E. H. 1982. Perspective on speciation by reinforcement. South African Journal of Science 78:5357.Google Scholar
Paterson, H. E. H. 1985. The recognition concept of species. Pp. 2123in Vrba, E. S., ed. Species and Speciation. Transvaal Museum Monographs No. 4. Pretoria.Google Scholar
Rosenzweig, M. L. 1978. Competitive speciation. Biological Journal of Linnean Society 10:275289.Google Scholar
Savage, D. E., and Russell, D. E. 1983. Mammalian paleofaunas of the world. Addison-Wesley, London.Google Scholar
Schliewen, U. K., Tautz, D., and Paabo, S. 1994. Sympatric speciation suggested by monophyly of crater lake cichlids. Nature 368:629632.Google Scholar
Shackleton, N. J. 1995. New data on the evolution of Pliocene climatic variability. Pp. 242248in Vrba, 1995.Google Scholar
Shackleton, N. J., Backman, J., Zimmerman, H., Kent, D. V., Hall, M. A., Roberts, D. G., Schnitker, D., Baldauf, J. G., Despairies, A., Homrighausen, R., Huddlestun, P., Keene, J. B., Kaltenback, A. J., Krumsiek, K., Morton, A. C., Murray, J. W., and Westberg-smith, J. 1984. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature 307:620623.Google Scholar
Signor, P. W., and Lipps, J. H. 1982. Sampling bias, gradual extinction patterns and catastrophes in the fossil record. Geological Society of America Special Paper 190:291296.Google Scholar
Sinclair, A. R. E. 1977. The African buffalo. University of Chicago Press, Chicago.Google Scholar
Stanley, S. M. 1985. Climatic cooling and Plio-Pleistocene mass extinction of molluscs around margins of the Atlantic. South African Journal of Science 81:266.Google Scholar
Stenseth, N. C., and Smith, J. Maynard 1984. Coevolution in ecosystems: Red Queen evolution or stasis? Journal of Evolution 38:870880.Google Scholar
Templeton, A. R. 1981. Mechanisms of speciation—a population genetic approach. Annual Review of Ecology and Systematics 12:2348.Google Scholar
Turner, A. 1999. Evolution in the African Plio-Pleistocene mammalian fauna: correlation and causation. Pp. 7687in Bromage, T. G. and Schrenk, F., eds. African biogeography, climate change, and early human evolution. Oxford University Press, Oxford.Google Scholar
Van Valen, L. 1973. A new evolutionary law. Journal of Evolutionary Theory 1:130.Google Scholar
Via, S. 2001. Sympatric speciation in animals: the ugly duckling grows up. Trends in Ecology and Evolution 16:381390.Google Scholar
Vrba, E. S. 1974. CHRON Chronological and ecological implications of the fossil Bovidae at the Sterkfontein Australopithecite Site. Nature 256:1623.Google Scholar
Vrba, E. S. 1975. Some evidence of the chronology and palaeoecology of Sterkfontein, Swartkrans and Kromdraai from the fossil Bovidae. Nature 254:301304.Google Scholar
Vrba, E. S. 1980. Evolution, species and fossils: how does life evolve? South African Journal of Science. 76:6184.Google Scholar
Vrba, E. S. 1985. Environment and evolution: alternative causes of the temporal distribution of evolutionary events. South African Journal of Science 81:229236.Google Scholar
Vrba, E. S. 1987. Ecology in relation to speciation rates: some case histories of Miocene-Recent mammal clades. Evolutionary Ecology 1:283300.Google Scholar
Vrba, E. S. 1988. Late Pliocene climatic events and hominid evolution. Pp. 405426in Grine, F. E., ed. The evolutionary history of the robust Australopithecines. Aldine, New York.Google Scholar
Vrba, E. S. 1992. Mammals as a key to evolutionary theory. Journal of Mammalogy 73:128.Google Scholar
Vrba, E. S. 1993. Turnover-pulses, the Red Queen, and related topics. American Science 293-A:418452.Google Scholar
Vrba, E. S. 1995a. On the connections between paleoclimate and evolution. Pp. 2445in Vrba, et al. 1995.Google Scholar
Vrba, E. S. 1995b. The fossil record of African antelopes (Mammalia, Bovidae) in relation to human evolution and paleoclimate. Pp. 385424in Vrba, et al. 1995.Google Scholar
Vrba, E. S. 1998. Multiphasic growth models and the evolution of prolonged growth exemplified by human brain evolution. Journal of Theoretical Biology 190:227239.Google Scholar
Vrba, E. S. 2000. Major features of Neogene mammalian evolution in Africa. Pp. 277304in Partridge, T. C. and Maud, R., eds. Cenozoic geology of southern Africa. Oxford University Press, Oxford.Google Scholar
Vrba, E. S. 2004. Ecology, evolution, and development: perspectives from the fossil record. Pp. 85105in Hall, B. K., Pearson, R. D., and Muller, G. B., eds. Environment, development, and evolution. MIT Press, Cambridge.Google Scholar
Vrba, E. S., and DeGusta, D. 2004. Do species populations really start small? New perspectives from the Late Neogene fossil record of African mammals. Journal of Philosophical Transactions of the Royal Society of London B 359:285293.Google Scholar
Vrba, E. S., Denton, G. H., Partridge, T. C., and Burckle, L. H., eds. 1995. Paleoclimate and evolution with emphasis on human origins. Yale University Press, New Haven, Conn.Google Scholar
Walker, A., Leakey, R. E., Harris, J. N., and Brown, F. H. 1986. 2.5-Myr Australopithecus boisei from west of Lake Turkana, Kenya. Journal of Nature 322:517522.Google Scholar
Wake, D. B., and Larson, A. 1987. Multidimensional analysis of an evolutionary lineage. Science 238:4248.Google Scholar
Webb, S. D., Hulbert, R. C., and Lambert, W. D. 1995. Climatic implications of large-herbivore distributions in the Miocene of North America. Pp. 91114in Vrba, et al. 1995.Google Scholar
Wesselman, H. B. 1995. Of mice and almost-men. Pp. 356368in Vrba, et al. 1995.Google Scholar
West-Eberhard, M. J. 2003. Developmental plasticity and evolution. Oxford University Press, New York.Google Scholar
Wright, S. 1932. The roles of mutation, inbreeding, crossbreeding, and a selection in evolution. Proceedings of the VIth International Congress on Genetics 1:356–66.Google Scholar
Wright, S. 1967. Comments on the preliminary working papers of Eden and Waddington. Pp. 117120in Moorehead, P. S. and Kaplan, M. M., eds. Mathematical challenges to the Neo-Darwinian theory of evolution. Wistar Institute Symposium No. 5. Philadelphia.Google Scholar
Zelditch, M. L., Sheets, H. D., and Fink, W. L. 2000. Spatiotemporal reorganization of growth rates in the evolution of ontogeny. Evolution 54:13631371.Google Scholar