Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T00:01:02.924Z Has data issue: false hasContentIssue false

A multiplicative multifractal model for originations and extinctions

Published online by Cambridge University Press:  08 February 2016

Roy E. Plotnick
Affiliation:
Department of Earth and Environmental Sciences, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607. E-mail: plotnick@uic.edu
J. John Sepkoski Jr.
Affiliation:
Department of Earth and Environmental Sciences, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607. E-mail: plotnick@uic.edu

Abstract

Recent works have suggested that the fossil record exhibits a fractal structure; i.e., that processes, such as extinction, follow a power-law size distribution and their time series show a 1/f power spectrum. This structure has been used as evidence that evolutionary dynamics are an example of a self-organized critical (SOC) process. We have reexamined this claim by analyzing a detailed record of marine genus-level extinctions and originations. Our results indicate that neither extinctions nor origination metrics show the power-law size distribution or a 1/f power spectrum characteristic of SOC and related models. We also believe that the underlying assumptions of SOC are incompatible with our understanding of the processes controlling macroevolutionary patterns.

Statistical analyses of the data sets are compatible, however, with the presence of multifractal self-similarity in both records, consistent with a hierarchical and multiplicative generating process. This model assumes that multiple causal mechanisms, acting over many spatial and temporal scales, interact to promote or inhibit originations and extinctions. In this view, the same event can have quite different impacts depending on the state of the biotic or physical system at the time that it occurs. This may at least partially explain such phenomena as the imperfect correlation between eustatic sea-level changes and macroevolutionary processes and the apparent nonlinear response of biotic systems to bolide impacts.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Allen, T., and Hoekstra, T. 1992. Toward a Unified ecology. Columbia University Press, New York.Google Scholar
Allmon, W., Morris, P. J., and McKinney, M. L. 1998. An intermediate disturbance hypothesis of maximal speciation. Pp. 349376in McKinney, and Drake, 1998.Google Scholar
Alvarez, L. W., Alvarez, W., Asaro, F., and Michel, H. V. 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction: experimental results and theoretical interpretation. Science 208:10951108.CrossRefGoogle Scholar
Aronson, R. B. 1994. Scale-independent biological interactions in the marine environment. Oceanography and Marine Biology: an Annual Review 32:435460.Google Scholar
Aronson, R., and Plotnick, R. 1998. Scale-independent interpretations of macroevolutionary dynamics. Pp. 430450in McKinney, and Drake, 1998.Google Scholar
Ausloos, M., Mróz, I., Pekalski, A., and Vandewalle, N. 1998. Lattice gas model of gradual evolution. Physica A 248:155164.CrossRefGoogle Scholar
Bak, P. 1996. How nature works. Springer, New York.CrossRefGoogle Scholar
Bak, P., and Sneppen, K. 1993. Punctuated equilibrium and criticality in a simple model of evolution. Physical Review Letters 71:40834086.CrossRefGoogle Scholar
Bak, P., Tang, C., and Wiesenfeld, K. 1987. Self-organized criticality: an explanation for 1/f noise. Physical Review Letters 59:381384.CrossRefGoogle Scholar
Bak, P., Tang, C., and Wiesenfeld, K. 1988. Self-organized criticality. Physical Review A 38:364374.CrossRefGoogle ScholarPubMed
Bak, P., Flyvbjerg, H., and Sneppen, K. 1994. Can we model Darwin? New Scientist, 12 March 1994:3639.Google Scholar
Bambach, R. 1993. Seafood through time: changes in biomass, energetics, and productivity in the marine ecosystem. Paleobiology 19:372397.CrossRefGoogle Scholar
Bassingthwaighte, J. B., and Raymond, G. M. 1994. Evaluating rescaled range analysis for time-series. Annals of Biomedical Engineering 22:432444.CrossRefGoogle ScholarPubMed
Bennett, K. D. 1990. Milankovitch cycles and their effects on species in ecological and evolutionary time. Paleobiology 16:1121.CrossRefGoogle Scholar
Bennett, K. D. 1997. Evolution and ecology: the pace of life. Cambridge University Press, Cambridge.Google Scholar
Benton, M. J. 1993. The fossil record 2. Chapman and Hall, London.Google Scholar
Beran, J. 1992. Statistical methods for data with long-range dependence. Statistical Science 7:404427.Google Scholar
Brett, C. 1995. Sequence stratigraphy, paleoecology, and evolution: biotic clues and responses to sea-level fluctuations. Palaios 10:597616.CrossRefGoogle Scholar
Cheng, Q. 1999. Markov processes and discrete multifractals. Mathematical Geology 31:455469.CrossRefGoogle Scholar
Cohen, A. S. 1998. Reflections on community ecology and the community of ecology: the view from a 1998 Penrose conference on “Linking Spatial and Temporal Scales in Paleoecology and Ecology.” Palaios 13:603605.CrossRefGoogle Scholar
Delcourt, H. R., and Delcourt, P. A. 1988. Quaternary landscape ecology: relevant scales in space and time. Landscape Ecology 2:2344.CrossRefGoogle Scholar
Drossel, B. 1998. Extinction events and species lifetimes in a simple ecological model. Physical Review Letters 81:50115014.CrossRefGoogle Scholar
Eble, G. 1999. Originations: land and sea compared. Geobios 32:223234.CrossRefGoogle Scholar
Eldredge, N. 1999. The pattern of evolution. W. H. Freeman, New York.Google Scholar
Enquist, B. A., Jordan, M. A., and Brown, J. H. 1995. Connections between ecology, biogeography, and paleobiology: relationship between local abundance and geographic distribution in fossil and recent molluscs. Evolutionary Ecology 9:586604.CrossRefGoogle Scholar
Erwin, D. H. 1993. The great Paleozoic crisis. Columbia University Press, New York.Google Scholar
Feder, J. 1988. Fractals. Plenum, New York.CrossRefGoogle Scholar
Flessa, K., ed. 2000. Dynamic history of the earth-life system: a report to the National Science Foundation on research directions in paleontology. GSA Today 10:89.Google Scholar
Foote, M. 1994. Temporal variation in extinction risk and temporal scaling of extinction metrics. Paleobiology 20:424444.CrossRefGoogle Scholar
Gilinsky, N. 1991. The pace of taxonomic evolution. In Gilinsky, N. and Signor, P. W., eds. Analytical paleontology. Short Courses in Paleontology 4:157174. Paleontological Society, Knoxville, Tenn.Google Scholar
Gould, S. J. 1977. Eternal metaphors of paleontology. Pp. 126in Hallam, A., ed. Patterns of evolution. Elsevier, Amsterdam.Google Scholar
Gould, S. J. 1985. The paradox of the first tier: an agenda for paleobiology. Paleobiology 11:212.CrossRefGoogle Scholar
Grassberger, P. 1995. The Bak-Sneppen model for punctuated evolution. Physics Letters A 200:277282.CrossRefGoogle Scholar
Harte, J., Kinzig, A., and Green, J. 1999. Self-similarity in the distribution and abundance of species. Science 284:334336.CrossRefGoogle ScholarPubMed
Jablonski, D., and Sepkoski, J. J. Jr. 1996. Paleobiology, community ecology, and scales of ecological pattern. Ecology 77:13671378.CrossRefGoogle ScholarPubMed
Kauffman, S. A. 1993. The origins of order: self organization and selection in evolution. Oxford University Press, New York.CrossRefGoogle Scholar
Kauffman, S. A., and Johnsen, S. 1991. Coevolution to the edge of chaos: coupled fitness landscapes, poised states, and coevolutionary avalanches. Journal of Theoretical Biology 149:467505.CrossRefGoogle Scholar
Kaufman, J. H., Brodbeck, D., and Melroy, O. R. 1998. Critical biodiversity. Conservation Biology 12:521532.CrossRefGoogle Scholar
Kirchner, J. W., and Weil, A. 1998. No fractals in fossil extinction statistics. Nature 395:337338.CrossRefGoogle Scholar
Kirchner, J. W., and Weil, A. 2000. Delayed biological recovery from extinctions throughout the fossil record. Nature 404:177180.CrossRefGoogle ScholarPubMed
Klemes, V. 1974. The Hurst phenomenon: a puzzle. Water Resources Research 10:675688.CrossRefGoogle Scholar
Maddox, J. 1994. Punctuated equilibrium by computer. Nature 371:197.CrossRefGoogle Scholar
Mandelbrot, B. 1989. Multifractal measures, especially for the geophysicist. Pure and Applied Geophysics 131:542.CrossRefGoogle Scholar
Mandelbrot, B., and Wallis, J. R. 1969. Some long-run properties of geophysical methods. Water Resources Research 5:321340.CrossRefGoogle Scholar
Martin, R. E. 1998. One long experiment. Columbia University Press, New York.Google Scholar
May, R. M. 1986. The search for patterns in the balance of nature: advances and retreats. Ecology 67:11151126.CrossRefGoogle Scholar
McKinney, M. L., and Drake, J., eds. 1998. Biodiversity dynamics. Columbia University Press, New York.Google Scholar
Mesa, O. J., and Poveda, G. 1993. The Hurst effect: the scale of fluctuation approach. Water Resources Research 29:39954002.CrossRefGoogle Scholar
Miller, A. I. 1997. Dissecting global diversity patterns: examples from the Ordovician radiation. Annual Review of Ecology and Systematics 28:85104.CrossRefGoogle ScholarPubMed
Miller, A. I., and Mao, S. 1998. Scales of diversification and the Ordovician radiation. Pp. 288310in McKinney, and Drake, 1998.Google Scholar
Montroll, E. W., and Shlesinger, M. F. 1982. On 1/f noise and other distributions with long tails. Proceedings of the National Academy of Sciences USA 79:33803383.CrossRefGoogle ScholarPubMed
Newman, M. E. J. 1996. Self-organized criticality, evolution, and the extinction fossil record. Proceedings of the Royal Society of London B 263:16051610.Google Scholar
Newman, M. E. J., and Eble, G. 1999. Power spectra of extinction in the fossil record. Proceedings of the Royal Society of London B 266:14.Google Scholar
O'Neill, R. V., DeAngelis, D. L., Waide, J. B., and Allen, T. F. H. 1986. A hierarchical concept of ecosystems. Princeton University Press, Princeton, N.J.Google Scholar
Over, T. O., and Gupta, V. K. 1996. A space-time theory of mesoscale rainfall using random cascades. Journal of Geophysical Research D 21:2631926331.CrossRefGoogle Scholar
Patterson, R. T., and Fowler, A. D. 1996. Evidence of self organization in planktic foraminiferal evolution: implications for interconnectedness of paleoecosystems. Geology 24:215218.2.3.CO;2>CrossRefGoogle Scholar
Patzkowsky, M. E. 1999. A new agenda for evolutionary paleoecology—or would you in the background please step forward. Palaios 14:195197.CrossRefGoogle Scholar
Pekalski, A. 1999. Mutations and changes of the environment in a model of biological evolution. Physica A 265:255263.CrossRefGoogle Scholar
Pelletier, J. D. 1999. Species-area relation and self-similarity in a biogeographical model of speciation and extinction. Physical Review Letters 82:19831986.CrossRefGoogle Scholar
Plotnick, R. 1995. Introduction to fractals. In Middleton, G., Plotnick, R., and Rubin, D., eds. Nonlinear dynamics and fractals—new numerical techniques for sedimentary data. SEPM (Society for Sedimentary Geology) Short Course 36:128.Google Scholar
Plotnick, R. 1996. The ecological play and the geological theater. Palaios 11:207208.CrossRefGoogle Scholar
Plotnick, R., and McKinney, M. 1993. Ecosystem organization and extinction dynamics. Palaios 8:202212.CrossRefGoogle Scholar
Plotnick, R., and Sepkoski, J. J. Jr. 1998. A multifractal model for macroevolution. Geological Society of America Abstracts with Programs 30:A328.Google Scholar
Plotnick, R., Gardner, R., Hargrove, W., Prestegaard, K., and Perlmutter, M. 1996. Lacunarity analysis: a general technique for the analysis of spatial patterns. Physical Review E 53:4615468.CrossRefGoogle ScholarPubMed
Poag, C. W. 1997. Roadblocks on the kill curve: testing the Raup hypothesis. Palaios 12:582590.CrossRefGoogle Scholar
Raup, D. M. 1991a. A kill curve for Phanerozoic marine species. Paleobiology 17:3748.CrossRefGoogle ScholarPubMed
Raup, D. M. 1991b. Extinction: bad genes or bad luck? Norton, New York.Google ScholarPubMed
Raup, D. M. 1992. Large-body impact and extinction in the Phanerozoic. Paleobiology 18:8088.CrossRefGoogle ScholarPubMed
Raup, D. M. 1997. A breakthrough book? Complexity, 2:3033.3.0.CO;2-L>CrossRefGoogle Scholar
Raup, D. M., and Sepkoski, J. J. Jr. 1986. Periodic extinctions of families and genera. Science 231:833836.CrossRefGoogle ScholarPubMed
Rykiel, E. J. Jr. 1996. Testing ecological models: the meaning of validation. Ecological Modelling 90:229244.CrossRefGoogle Scholar
Schroeder, M. 1991. Fractals, chaos, power laws. W. H. Freeman, New York.Google Scholar
Sepkoski, J. J. Jr. 1984. A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology 10:246267.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1992. A compendium of fossil marine families, 2d ed. Milwaukee Public Museum Contributions in Biology and Geology 83:1156.Google Scholar
Sepkoski, J. J. Jr. 1997. Biodiversity: past, present, and future. Journal of Paleontology 71:533538.CrossRefGoogle ScholarPubMed
Sneppen, K., Bak, P., Flyvbjerg, H., and Jensen, M. H. 1995. Evolution as a self-organized critical phenomenon. Proceedings of the National Academy of Sciences USA 92:52095213.CrossRefGoogle ScholarPubMed
Solé, R. V., Manrubia, S. C., Benton, M., and Bak, P. 1997. Self-similarity of extinction statistics in the fossil record. Nature 388:764–467.CrossRefGoogle Scholar
Solé, R. V., Manrubia, S. C., Pérez-Mercader, J., Benton, M., and Bak, P. 1998. Long-range correlation in the fossil record and the fractal nature of macroevolution. Advances in Complex Systems 1:255266.CrossRefGoogle Scholar
Standish, R. K. 1999. Statistics of certain models of evolution. Physical Review E 59:15451550.CrossRefGoogle Scholar
Stanley, H. E. 1991. Fractals and multifractals: the interplay of physics and geometry. Pp. 149in Bunde, A. and Havlin, S., eds. Fractals and disordered systems. Springer, Berlin.Google Scholar
Stanley, S. M. 1990. Delayed recovery and the timing of mass extinctions. Paleobiology 16:401414.CrossRefGoogle Scholar
Stanley, S. M., and Hardie, L. A. 1998. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology 144:319.CrossRefGoogle Scholar
Wallis, J., and Matalas, N. 1969. Small sample properties of H and K-estimators of the Hurst coefficient. H. Water Resources Research 5:15831594.Google Scholar
Werner, B. T. 1999. Complexity in natural landform patterns. Science 284:102104.CrossRefGoogle ScholarPubMed
Wilke, C., and Martinetz, T. 1997. Simple model of evolution with variable system size. Physical Review E 56:71287131.CrossRefGoogle Scholar