Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-08T15:30:24.578Z Has data issue: false hasContentIssue false

On the accuracy of paleodiversity reconstructions: a case study in Antarctic Neogene radiolarians

Published online by Cambridge University Press:  23 May 2013

Johan Renaudie
Affiliation:
Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität zu Berlin, Invalidenstrae 43, 10115 Berlin, Germany. E-mail: johan.renaudie@mfn-berlin.de
David B. Lazarus
Affiliation:
Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität zu Berlin, Invalidenstrae 43, 10115 Berlin, Germany. E-mail: johan.renaudie@mfn-berlin.de

Abstract

The deep-sea Cenozoic planktonic microfossil record has the unique characteristics of continuously well-preserved populations of most species, with virtually unlimited sample size, and therefore constitutes, in principle, a major resource for macroevolutionary research. Antarctic Neogene radiolarians in particular, are diverse, abundant and consistently well-preserved and evolved rapidly. This fauna is, in theory, a near-perfect testing ground for paleodiversity reconstructions. In this study we determined the diversity history of these faunas from a new quantitative, taxonomically complete data set from Neogene and Quaternary sections at several Antarctic sites. The pattern retrieved by our whole-fauna data set shows a significant, largely extinctionless ecological change in faunal composition and decrease in the evenness of species' abundances during the late Miocene, followed 3 Myr later, at around 5 Ma, by a significant drop in diversity. We tentatively associate this ecological event with a synchronous, regional change in the composition of the primary producers, but as yet cannot identify any environmental changes associated with the later extinction. Further, our whole-fauna diversity history was compared to diversity computed from much less complete, biostratigraphically oriented studies of species' occurrences, compiled in the Neptune database and reconstructed by using subsampling methodologies. Comparison of our whole-fauna and subsampling-reconstructed diversity patterns shows that the first-order trends are the same in both, suggesting that, to some degree, such literature compilations can be used to explore diversity history of plankton. However, our results also highlight substantial errors and distortions in the reconstructed diversity which make it poorly suited to more-detailed studies (e.g., for comparison of diversity history with paleoenvironmental history). We conclude that detailed studies of plankton diversity, and particularly those attempting to understand the relation between diversity and paleoceanographic change, should be based on taxonomically comprehensive, quantitative data.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abelmann, A. 1992. Early to Middle Miocene radiolarian stratigraphy of the Kerguelen Plateau, leg 120. Pp. 757783in Wise et al. 1992.CrossRefGoogle Scholar
Adams, C. G., Benson, R. H., Kidd, R. B., Ryan, W. B. F., and Wright, R. C. 1977. The Messinian Salinity Crisis and evidence of Late Miocene eustatic changes in the world ocean. Nature 269:383386.CrossRefGoogle Scholar
Alroy, J. 1996. Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals. Palaeogeography, Palaeoclimatology, Palaeoecology 127:285311.CrossRefGoogle Scholar
Alroy, J. 2000. New methods for quantifying macroevolutionary patterns and processes. Paleobiology 26:707733.2.0.CO;2>CrossRefGoogle Scholar
Alroy, J. 2008. Dynamics of origination and extinction in the marine fossil record. Proceedings of the National Academy of Sciences USA 105 (Suppl.1):1153611542.CrossRefGoogle ScholarPubMed
Alroy, J. 2010a. Geographical, environmental and intrinsic biotic controls on Phanerozoic marine diversification. Palaeontology 53:12111235.CrossRefGoogle Scholar
Alroy, J. 2010b. Fair sampling of taxonomic richness and unbiased estimation of origination and extinction rates. InAlroy, J. and Hunt, G., eds. Quantitative methods in paleobiology. Paleontological Society Papers 16:5580.CrossRefGoogle Scholar
Alroy, J., Marshall, C. R., Bambach, R. K., Bezusko, K., Foote, M., Fürsich, F. T., Hansen, T. A., Holland, S. M., Ivany, L. C., Jablonski, D., Jacobs, D. K., Jones, D. C., Kosnik, M. A., Lidgard, S., Low, S., Miller, A. I., Novack-Gottshall, P. M., Olszewski, T. D., Patzkowsky, M. E., Raup, D. M., Roy, K., Sepkoski, J. J. Jr., Sommers, M. G., Wagner, P. J., and Webber, A. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences USA 98:62616266.CrossRefGoogle ScholarPubMed
Barker, P. E., et al., eds. 1988. Proceedings of the Ocean Drilling Program, Initial Reports 113. College Station, Tex.CrossRefGoogle Scholar
Barker, P. F., and Thomas, E. 2004. Origin, signature and palaeoclimatic influence of the Antarctic Circumpolar Current. Earth-Science Reviews 66:143162.CrossRefGoogle Scholar
Beerling, D. J., and Royer, D. L. 2011. Convergent Cenozoic CO2 history. Nature Geoscience 4:418420.CrossRefGoogle Scholar
Berggren, W. A., Kent, D. V., Swisher, C. C. III, and Aubry, M.-P. 1995. A revised Cenozoic geochronology and chronostratigraphy. InBerggren, W. A.et al., eds. Geochronology time scales and global stratigraphic correlation. SEPM Special Publication 54:129212.Google Scholar
Billups, K. 2002. Late Miocene through early Pliocene deep water circulation and climate change viewed from the sub-Antarctic South Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology 185:287307.CrossRefGoogle Scholar
Billups, K., Kelly, C., and Pierce, E. 2008. The late Miocene to early Pliocene climate transition in the Southern Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 267:3140.CrossRefGoogle Scholar
Bohaty, S. M., Wise, S. W. Jr., Duncan, R. A., Moore, C. L., and Wallace, P. J. 2003. Neogene diatom biostratigraphy, tephra stratigraphy, and chronology of ODP Hole 1138A, Kerguelen Plateau. InFrey, F. A.et al., eds. Proceedings of the Ocean Drilling Program, Scientific Results 183 (9):153. College Station, Tex.Google Scholar
Boltovskoy, D. 1998. Pelagic biogeography: background, gaps and trends. InPierrot-Bults, A. C. and van der Spoel, S., eds. Pelagic biogeography ICoPB II: proceedings of the 2nd international conference. Final report of SCOR/IOC Working Group 93. IOC Workshop Report 142:5364Google Scholar
Boltzmann, L. 1872. Weitere studien über das wärmegleichgewicht unter gasmolekülen. Sitzungsberichte der Akademie der Wissenschaften, Wien 66:275370.Google Scholar
Bush, A. M., Markey, M. J., and Marshall, C. R. 2004. Removing bias from diversity curves: the effect of spatially organized biodiversity on sampling-standardization. Paleobiology 30 (4):666686.2.0.CO;2>CrossRefGoogle Scholar
Caulet, J.-P. 1991. Radiolarians from the Kerguelen Plateau, ODP Leg 119. InBarron, J. and Larsen, B., eds. Proceedings of the Ocean Drilling Program, Scientific Results119:513–546. College Station, Tex.Google Scholar
Chao, A., and Lee, S.-M. 1992. Estimating the number of classes via sample coverage. Journal of the American Statistical Association 87 (417):210217.CrossRefGoogle Scholar
Chen, P.H. 1975. Antarctic Radiolaria. InHayes, D. E.et al., eds. Initial Reports of the Deep Sea Drilling Project 28:437513. U.S. Government Printing Office, Washington, D.C.Google Scholar
Cieselski, P. F., Ledbetter, M. T., and Ellwood, B. B. 1982. The development of Antarctic glaciation and the Neogene paleoenvironment of the Maurice Ewing Bank. Marine Geology 46:151.CrossRefGoogle Scholar
Cleveland, W. S., Grosse, E., and Shyu, M. J. 1992. Local regression models. Pp. 309376inChambers, J. M. and Hastie, T., eds. Statistical models in S. Chapman and Hall, New York.Google Scholar
Colwell, R. K., and Coddington, J. A. 1994. Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society of London B 345:101118.Google ScholarPubMed
de Caprariis, P., Lindemann, R. H., and Collins, C. M. 1976. A method for determining optimum sample size in species diversity studies. Mathematical Geology 8:575581.CrossRefGoogle Scholar
de Caprariis, P., Lindemann, R. H., and Haimes, R. 1981. A relationship between sample size and accuracy of species richness predictions. Mathematical Geology 13:351355.CrossRefGoogle Scholar
De Wever, P., Dumitrica, P., Caulet, J.-P., Nigrini, C., and Caridroit, M. 2001. Radiolarians in the sedimentary record. Gordon and Breach, Amsterdam.Google Scholar
Diester-Haass, L., Billups, K., and Emeis, K. C. 2005. In search of the late Miocene–early Pliocene “biogenic bloom” in the Atlantic Ocean (Ocean Drilling Program Sites 982, 925, and 1088). Paleoceanography 20:PA4001. doi: 10.1029/2005PA001139.CrossRefGoogle Scholar
Ehrenberg, C. G. 1844. Einige vorlaufige Resultate seiner Untersuchungen der ihm von der Sudpolreise des Captain Ross, so wie von den Herren Schayerund Darwin zugekommenen Materialien über das Verhalten des kleinsten Lebens in den Oceanen und den grossten Bisher zuganglichen Tiefen des Weltmeeres. Königlichen Preußischen Akademie der Wissenschaften zu Berlin, Bericht, Jahre 1844182207.Google Scholar
Ezard, T. H. G., Aze, T., Pearson, P. N., and Purvis, A. 2011. Interplay between changing climate and species' ecology drives macroevolutionary dynamics. Science 332:349351.CrossRefGoogle ScholarPubMed
Foote, M. 2000. Origination and extinction components of taxonomic diversity: general problems. InErwin, D. H. and Wing, S. L., eds. Deep time: Paleobiology's perspective. Paleobiology 26 (Supp. to No. 4):74102.Google Scholar
Good, I. J. 1953. The population frequencies of species and the estimation of population parameters. Biometrika 40:237264.CrossRefGoogle Scholar
Grant, K. M., and Dickens, G. R. 2002. Coupled paleoproductivity and carbon isotope records in the southwest Pacific Ocean during the late Miocene–early Pliocene biogenic bloom. Palaeogeography, Palaeoclimatology, Palaeoecology 187:6182.CrossRefGoogle Scholar
Gregg, W. W., and Casey, N. W. 2007. Modeling coccolithophores in the global oceans. Deep-Sea Research II 54:447477.CrossRefGoogle Scholar
Grützner, J., Hillenbrand, C.-D., and Rebesco, M. 2005. Terrigenous flux and biogenic silica deposition at the Antarctic continental rise during the late Miocene to early Pliocene: implications for ice sheet stability and sea ice coverage. Global and Planetary Change 45:131149.CrossRefGoogle Scholar
Haq, B. U., Worsley, T. R., Burckle, L. H., Douglas, R. G., Keigwin, L. D. Jr., Opdyke, N. D., Savin, S. M., Sommer, M. A. II, Vincent, E., and Woodruff, F. 1980. Late Miocene marine carbon-isotopic shift and synchroneity of some phytoplanktonic biostratigraphic events. Geology 8:427431.2.0.CO;2>CrossRefGoogle Scholar
Hays, J. D. 1965. Radiolaria and late Tertiary and Quaternary history of Antarctic seas. InLlano, G. A., ed. Biology of the Antarctic seas II. Antarctic Research Series 5:125184.Google Scholar
Hillenbrand, C.-D., and Fütterer, D. K. 2001. Neogene to Quaternary deposition of opal on the continental rise west of the Antarctic Peninsula, ODP Leg 178, sites 1095 1096 and 1101. InBarker, P. F.et al., eds. Proceedings of the Ocean Drilling Program, Scientific Results 178:133. College Station, Tex.Google Scholar
Hodell, D. A., and Venz-Curtis, K. A. 2006. Late Neogene history of deepwater ventilation in the Southern Ocean. Geochemistry, Geophysics, Geosystems 7:Q09001. doi:10.1029/2005GC001211.CrossRefGoogle Scholar
Horn, H. 1966. Measurement of “overlap” in comparative ecological studies. American Naturalist 100:419424.CrossRefGoogle Scholar
Kaminski, M. A., Setoyama, E., and Cetean, C. G. 2010. The Phanerozoic diversity of agglutinated foraminifera: origination and extinction rates. Acta Palaeontologica Polonica 55:529539.CrossRefGoogle Scholar
Kennett, J. P., and Barker, P. F. 1990. Latest Cretaceous to Cenozoic climate and oceanographic developments in the Weddell Sea, Antarctica: an ocean-drilling perspective. InBarker, P. F.et al., eds. Proceedings of the Ocean Drilling Program, Scientific Results 113:937960. College Station, Tex.Google Scholar
Kiessling, W., and Danelian, T. 2011. Trajectories of late Permian- Jurassic radiolarian extinction rates: no evidence for an end-Triassic mass extinction. Fossil Record 14:95101.CrossRefGoogle Scholar
Koch, C. F. 1978. Bias in the published fossil record. Paleobiology 4:367372.CrossRefGoogle Scholar
Lazarus, D. B. 1990. Middle Miocene to Recent radiolarians from the Weddell Sea, Antarctica, ODP Leg 113. InKennett, J. P.et al., eds. Proceedings of the Ocean Drilling Program, Scientific Results 113:709727. College Station, Tex.Google Scholar
Lazarus, D. B. 1992. Antarctic Neogene radiolarians from the Kerguelen Plateau, Legs 119 and 120. Pp. 785809in Wise et al. 1992.Google Scholar
Lazarus, D. B. 1994. Neptune: a marine micropaleontology database. Mathematical Geology 26:817832.CrossRefGoogle Scholar
Lazarus, D. B. 2002. Environmental control of diversity, evolutionary rates and taxa longevities in Antarctic Neogene Radiolaria. Palaeontologia Electronica 5 (1):32pp.Google Scholar
Lazarus, D. B. 2006. The Micropaleontological Reference Center Network. Scientific Drilling 3:4649.CrossRefGoogle Scholar
Lazarus, D. B. 2011. The deep-sea microfossil record of macroevolutionary change in plankton and its study. Pp. 141166in McGowan and Smith 2011.CrossRefGoogle Scholar
Lazarus, D. B., and Caulet, J.-P. 1994. Cenozoic Southern Ocean reconstructions from sedimentologic, radiolarian and other microfossil data. InKennett, J. P. and Warnke, D. A., eds. The Antarctic paleoenvironment: a perspective on global change. Antarctic Research Series 60:145174.CrossRefGoogle Scholar
Lazarus, D. B., Spencer-Cervato, C., Pika-Biolzi, M., Beckmann, J. P., von Salis, K., Hilbrecht, H., and Thierstein, H. R. 1995. Revised chronology of Neogene DSDP Holes from the World Ocean. Ocean Drilling Program Technical Note 24.CrossRefGoogle Scholar
Lazarus, D. B., Weinkauf, M., and Diver, P. 2012. Pacman profiling: a simple procedure to identify stratigraphic outliers in high-density deep-sea microfossil data. Paleobiology 38:858875.CrossRefGoogle Scholar
Liow, L. H., Skaug, H. J., Ergon, T., and Schweder, T. 2010. Global occurrences trajectories of microfossils: environmental volatility and the rise and fall of individual species. Paleobiology 36:224252.CrossRefGoogle Scholar
Lipps, J. H. 1981. What, if anything, is micropaleontology? Paleobiology 7:167199.CrossRefGoogle Scholar
Lloyd, G. T., Smith, A. B., and Young, J. R. 2011. Quantifying the deep-sea rock and fossil record bias using coccolithophores. Pp. 141166in McGowan and Smith 2011.Google Scholar
Longhurst, A. 1998. Ecological biogeography of the pelagial. InPierrot-Bults, A. C. and van der Spoel, S., eds. Pelagic biogeography ICoPB II. Proceedings of the 2nd International Conference. Final report of SCOR/IOC Working Group 93. IOC Workshop Report 142:239249.Google Scholar
Mackensen, A., Barrera, E., and Hubberten, H.-W. 1992. Neogene circulation in the Southern Indian Ocean: evidence from benthic foraminifers, carbonate data and stable isotope analyses (Site 751). Pp. 867878in Wise et al. 1992.Google Scholar
McGowan, A. J., and Smith, A. B., eds. 2011.Comparing the geological and fossil records: implications for biodiversity studies. Geological Society of London Special Publication 358.Google Scholar
Moore, T. C. 1973. Method of randomly distributing grains for microscope examination. Journal of Sedimentary Petrology 43:904906.Google Scholar
Morisita, M. 1959. Measuring of interspecific association and similarity between communities. Memoirs of the Faculty of Science, Kyushu University E 3:6580.Google Scholar
Petrushevskaya, M. G. 1967. Radiolaryii otryadov Spumellaria i Nasselaria antarkticheskoi oblasti. Issledovaniya Fauny Morei 4 (12):2186.Google Scholar
Petrushevskaya, M. G. 1975. Cenozoic radiolarians of the Antarctic, Leg 29, Deep Sea Drilling Project. InKennett, J. P.et al., eds. Initial Reports of the Deep Sea Drilling Project 29:541676. U.S. Government Printing Office, Washington, D.C.Google Scholar
R Development Core Team. 2011. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.Google Scholar
Rabosky, D. L., and Sorhannus, U. 2009. Diversity dynamics of marine planktonic diatoms across the Cenozoic. Nature 457:183186.CrossRefGoogle ScholarPubMed
Renaudie, J., and Lazarus, D. B. 2012. New species of Neogene radiolarians from the Southern Ocean. Journal of Micropalaeontology 31:2952.CrossRefGoogle Scholar
Renaudie, J., 2013. New species of Neogene radiolarians from the Southern Ocean, Part II. Journal of Micropalaeontology 32:5986.CrossRefGoogle Scholar
Sanders, H. L. 1968. Marine benthic diversity: a comparative study. American Naturalist 102:243282.CrossRefGoogle Scholar
Schlich, R., et al., eds. 1989. Proceedings of the Ocean Drilling Program, Initial Reports 120. College Station, Tex.Google Scholar
Shannon, C. E. 1948. A mathematical theory of communication. Bell System Technical Journal 27:379423.CrossRefGoogle Scholar
Shinozaki, K. 1963. Note on the species-area curve. Proceedings of the 10th annual meeting of the Ecological Society of Japan, pp. 15. [In Japanese.]Google Scholar
Shipboard Scientific Party. 1988a. Site 689. Pp. 89181in Barker et al. 1988.Google Scholar
Shipboard Scientific Party 1988b. Site 690. Pp. 183292in Barker et al. 1988.Google Scholar
Shipboard Scientific Party 1988c. Site 693. Pp. 329447in Barker et al. 1988.Google Scholar
Shipboard Scientific Party 1989a. Site 747. Pp. 89156in Schlich et al. 1989.Google Scholar
Shipboard Scientific Party 1989b. Site 748. Pp. 157235in Schlich et al. 1989.Google Scholar
Shipboard Scientific Party 1989c. Site 751. Pp. 339373in Schlich et al. 1989.Google Scholar
Smith, A. B., and McGowan, A. J. 2011. The ties linking rock and fossil records and why they are important for palaeodiversity studies. Pp. 18in McGowan and Smith 2011.CrossRefGoogle Scholar
Spearman, C. 1904. The proof and measurement of association between two things. American Journal of Psychology 15:72101.CrossRefGoogle Scholar
Spencer-Cervato, C. 1999. The Cenozoic deep-sea microfossil record: explorations of the DSDP/ODP sample set using the Neptune database. Palaeontologia Electronica 2 (2):270pp.Google Scholar
Tedford, R. A., and Kelly, D. C. 2004. A deep-sea record of the late Miocene carbon shift from the southern Tasman Sea. InExon, N.et al., eds. The Cenozoic Southern Ocean: tectonics, sedimentation and climate change between Australia and Antarctica. Geophysical Monograph 151:273290.Google Scholar
Vigour, R., and Lazarus, D. B. 2002. Biostratigraphy of late Miocene–early Pliocene radiolarians from ODP Leg 183 Site 1138. InFrey, F. A.et al., eds. Proceedings of the Ocean Drilling Program, Scientific Results 183 (10):117. College Station, Tex.Google Scholar
Vincent, E., Killingley, J. S., and Berger, W. H. 1980. The magnetic epoch-6 carbon shift: a change in the ocean's 13C/12C ratio 6.2 million years ago. Marine Micropaleontology 5:185203.CrossRefGoogle Scholar
Waddell, L. M., Hendy, I. L., Moore, T. C., and Lyle, M. W. 2009. Ventilation of the abyssal Southern Ocean during the late Neogene: a new perspective from the subantarctic Pacific. Paleoceanography 24:PA3206.CrossRefGoogle Scholar
Weaver, F. M. 1976. Antarctic Radiolaria from the southeast Pacific Basin, Deep Sea Drilling Project, Leg 35. InHollister, C. D.et al., eds. Initial Reports of the Deep Sea Drilling Project 35:569603. U.S. Government Printing Office, Washington, D.C.Google Scholar
Weaver, F. M. 1983. Cenozoic radiolarians from the Southwest Atlantic, Falkland Plateau region, Deep Sea Drilling Project, Leg 71. InLudwig, W. J.et al., eds. Initial Reports of the Deep Sea Drilling Project 71:667686. U.S. Government Printing Office, Washington, D.C.Google Scholar
Wise, S. W. Jr., et al., eds. 1992. Proceedings of the Ocean Drilling Program, Scientific Results, 120. College Station, Tex.CrossRefGoogle Scholar
Wright, J. D., and Miller, K. G. 1992. Miocene stable isotope stratigraphy, Site 747, Kerguelen Plateau. Pp. 855866in Wise et al. 1992.Google Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E. and Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to Present. Science 292:686693.CrossRefGoogle ScholarPubMed