Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T00:19:43.854Z Has data issue: false hasContentIssue false

Phanerozoic trends in brachiopod body size from synoptic data

Published online by Cambridge University Press:  04 June 2015

Zixiang Zhang
Affiliation:
Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305, U.S.A.
Michael Augustin
Affiliation:
Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York 14850, U.S.A.
Jonathan L. Payne*
Affiliation:
Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305, U.S.A.

Abstract

Body size is one of the most studied phenotypic attributes because it is biologically important and easily measured. Despite a long history of study, however, the pattern of body-size change in diverse higher taxa over the Phanerozoic remains largely unknown because few relevant data sets span more than a single geological period or provide comprehensive, global coverage. In this study, we measured representative specimens of 3414 brachiopod genera illustrated in the Treatise on Invertebrate Paleontology. We applied these size data to stage-resolved stratigraphic ranges from the Treatise and the Paleobiology Database to develop a Phanerozoic record of trends in brachiopod size. Using a model comparison approach, we find that temporal variation in brachiopod size exhibits two distinct modes—a Paleozoic mode of size increase and a post-Paleozoic mode indistinguishable from a random walk. This transition reflects a change in the identities of the most diverse brachiopod orders rather than a shift in mode within any given order. Paleozoic size increase reflects a small, persistent bias toward the origination of new genera larger than those surviving from the previous stage and is identifiable as a statistically supported trend in three orders representing both Class Strophomenata (Order Productida) and Class Rhynchonellata (orders Atrypida and Spiriferida). Extinction exhibits no consistent bias with respect to size. The shift in evolutionary mode across the end-Permian mass extinction adds to long-standing evidence from studies of diversity and abundance that this biotic catastrophe suddenly and permanently altered the evolutionary history of what was, until that time, the most diverse animal phylum on Earth.

Type
Articles
Copyright
Copyright © 2015 The Paleontological Society. All rights reserved. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Deceased

References

Literature Cited

Akaike, H. 1974. New look at statistical-model identification. IEEE Transactions on Automatic Control AC19:716723.CrossRefGoogle Scholar
Alroy, J. 1998. Cope’s rule and the dynamics of body mass evolution in North American fossil mammals. Science 280:731734.CrossRefGoogle ScholarPubMed
Arnold, A. J., Kelley, D. C., and Parker, W. C.. 1995. Causality and Cope’s Rule: evidence from the planktonic foraminifera. Journal of Paleontology 69:203210.CrossRefGoogle Scholar
Bambach, R. K. 1999. Energetics in the global marine fauna: a connection between terrestrial diversification and change in the marine biosphere. Geobios 32:131144.CrossRefGoogle Scholar
Bell, M. A., and Braddy, S. J.. 2012. Cope’s rule in the Ordovician trilobite family Asaphidae (order Asaphida): patterns across multiple most parsimonious trees. Historical Biology 24:223230.Google Scholar
Brown, J. H. 1995. Macroecology. University of Chicago Press, Chicago.Google Scholar
Calder, W. A. III. 1984. Size, function and life history. Harvard University Press, Cambridge.Google Scholar
Cherns, L., and Wright, V. P.. 2000. Missing molluscs as evidence of large-scale, early skeletal aragonite dissolution in a Silurian sea. Geology 28:791794.2.0.CO;2>CrossRefGoogle Scholar
Cherns, L., and Wright, V. P.. 2009. Quantifying the impacts of early diagenetic aragonite dissolution on the fossil record. Palaios 24:756771.CrossRefGoogle Scholar
Clapham, M. E., and Bottjer, D. J.. 2007. Prolonged Permian-Triassic ecological crisis recorded by molluscan dominance in Late Permian offshore assemblages. Proceedings of the National Academy of Sciences USA 104:1297112975.CrossRefGoogle ScholarPubMed
Clapham, M. E., Shen, S., and Bottjer, D. J.. 2009. The double mass extinction revisited: reassessing the severity, selectivity, and causes of the end-Guadalupian biotic crisis (Late Permian). Paleobiology 35:3250.CrossRefGoogle Scholar
Dahl, T. W., Hammarlund, E. U., Anbar, A. D., Bond, D. P. G., Gill, B. C., Gordon, G. W., Knoll, A. H., Nielsen, A. T., Schovsbo, N. H., and Canfield, D. E.. 2010. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proceedings of the National Academy of Sciences USA 107:1791117915.CrossRefGoogle Scholar
Dommergues, J. L., Montuire, S., and Neige, P.. 2002. Size patterns through time: the case of the Early Jurassic ammonite radiation. Paleobiology 28:423434.2.0.CO;2>CrossRefGoogle Scholar
Erwin, D. H. 1993. The great Paleozoic crisis: life and death in the Permian. Princeton University Press, Princeton, N.J.Google Scholar
Fraiser, M. L., and Bottjer, D. J.. 2004. The non-actualistic Early Triassic gastropod fauna: a case study of the Lower Triassic Sinbad Limestone Member. Palaios 19:259275.2.0.CO;2>CrossRefGoogle Scholar
Fraiser, M. L., and Bottjer, D. J.. 2007. When bivalves took over the world. Paleobiology 33:397413.CrossRefGoogle Scholar
Gould, S. J., and Calloway, C. B.. 1980. Clams and brachiopods: ships that pass in the night. Paleobiology 6:383396.CrossRefGoogle Scholar
Gradstein, F. M., Ogg, J. G., and van Kranendonk, M.. 2008. On the geologic time scale 2008. Newsletters on Stratigraphy 43:513.CrossRefGoogle Scholar
Hunt, G. 2006. Fitting and comparing models of phyletic evolution: random walks and beyond. Paleobiology 32:578601.CrossRefGoogle Scholar
Hunt, G. 2011. paleoTS: analyze paleontological time series. R package version 0:4–1. http://CRAN.R-project.org/package=paleoTS. Accessed 1 July 2011.Google Scholar
Hunt, G., and Roy, K.. 2006. Climate change, body-size evolution, and Cope’s Rule in deep-sea ostracodes. Proceedings of the National Academy of Sciences USA 103:13471352.CrossRefGoogle ScholarPubMed
HuntG., S. A. Wicaksono G., S. A. Wicaksono, Brown, J. E., and Macleod, K. G.. 2010. Climate-driven body-size trends in the ostracod fauna of the deep Indian Ocean. Palaeontology 53:12551268.CrossRefGoogle Scholar
Jablonski, D. 1996. Body size and macroevolution. Evolutionary paleobiology, 256289.Google Scholar
Jablonski, D. 1997. Body-size evolution in Cretaceous molluscs and the status of Cope’s rule. Nature 385:250252.CrossRefGoogle Scholar
Kidwell, S. M., and Brenchley, P. J.. 1994. Patterns in bioclastic accumulation through the Phanerozoic: changes in input or in destruction? Geology 32:11391143.2.3.CO;2>CrossRefGoogle Scholar
Kingsolver, J. G., and Pfennig, D. W.. 2004. Individual-level selection as a cause of Cope’s rule of phyletic size increase. Evolution 58:16081612.Google ScholarPubMed
Kosnik, M. A., Jablonski, D., Lockwood, R., and Novack-Gottshall, P. M.. 2006. Quantifying molluscan body size in evolutionary and ecological analyses: maximizing the return on data-collection efforts. Palaios 21:588597.CrossRefGoogle Scholar
Kosnik, M. A., Alroy, J., Behrensmeyer, A. K., Fürsich, F. T., Gastaldo, R. A., Kidwell, S. M., Kowalewski, M., Plotnick, R. E., Rogers, R. R., and Wagner, P. J.. 2011. Changes in shell durability of common marine taxa through the Phanerozoic: evidence for biological rather than taphonomic drivers. Paleobiology 37:303331.CrossRefGoogle Scholar
Krause, R. A. Jr., Stempien, J. A., Kowalewski, M., and Miller, A. I.. 2007. Body size estimates from the literature: utility and potential for macroevolutionary studies. Palaios 22:6073.CrossRefGoogle Scholar
Marshall, C. R. 2006. Explaining the Cambrian “explosion” of animals. Annual Review of Earth and Planetary Sciences 34:355384.CrossRefGoogle Scholar
Martin, R. E. 1996. Secular increase in nutrient levels through the Phanerozoic: implications for productivity, biomass, and diversity of the marine biosphere. Palaios 11:209219.CrossRefGoogle Scholar
Martin, R. E., and Quigg, A.. 2012. Evolving phytoplankton stoichiometry fueled diversification of the marine biosphere. Geosciences 2:130146.CrossRefGoogle Scholar
McShea, D. W. 1994. Mechanisms of large-scale evolutionary trends. Evolution 48:17471763.CrossRefGoogle ScholarPubMed
Newell, N. D. 1949. Phyletic size increase, an important trend illustrated by fossil invertebrates. Evolution 3:103124.CrossRefGoogle ScholarPubMed
Nicol, D. 1966. Cope’s rule and Precambrian and Cambrian invertebrates. Journal of Paleontology 40:13971399.Google Scholar
Novack-Gottshall, P. M. 2006. Ecosystem-wide body-size trends in Cambrian–Devonian marine invertebrate lineages. Paleobiology 34:210228.CrossRefGoogle Scholar
Novack-Gottshall, P. M. 2008. Using simple body-size metrics to estimate fossil body volume: empirical validation using diverse paleozoic invertebrates. Palaios 23:163173.CrossRefGoogle Scholar
Novack-Gottshall, P. M., and Lanier, M. A.. 2008. Scale-dependence of Cope’s rule in body-size evolution of Paleozoic brachiopods. Proceedings of the National Academy of Sciences USA 105:54305434.CrossRefGoogle ScholarPubMed
Payne, J. L. 2005. Evolutionary dynamics of gastropod size across the end-Permian extinction and through the Triassic recovery interval. Paleobiology 31:269290.CrossRefGoogle Scholar
Payne, J. L., and Clapham, M. E.. 2012. End-Permian mass extinction in the oceans: an ancient analog for the twenty-first century? Annual Review of Earth and Planetary Sciences 40:89111.CrossRefGoogle Scholar
Payne, J. L., Boyer, A. G., Brown, J. H., Finnegan, S., Kowalewski, M., Krause, R. A. Jr., Lyons, S. K., McClain, C. R., McShea, D. W., Novack-Gottshall, P. M., Smith, F. A., Stempien, J. A., and Wang, S. C.. 2009. Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity. Proceedings of the National Academy of Sciences USA 106:2427.CrossRefGoogle ScholarPubMed
Payne, J. L., Groves, J. R., Jost, A. B., Nguyen, T., Moffitt, S. E., Hill, T. M., and Skotheim, J. M.. 2012. Late Paleozoic fusulinoidean gigantism driven by atmospheric hyperoxia. Evolution 66:29292939.CrossRefGoogle ScholarPubMed
Payne, J. L., Heim, N. A., Knope, M. L., and McClain, C. R.. 2014. Metabolic dominance of bivalves predates brachiopod diversity decline by more than 150 million years. Proceedings of the Royal Society of London B 281:20133122.Google Scholar
Peters, R. H. 1983. The ecological implications of body size. Cambridge University Press, New York.CrossRefGoogle Scholar
R Development Core Team. 2011. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/.Google Scholar
Rego, B. L., Wang, S. C., Altiner, D., and Payne, J. L.. 2012. Within- and among-genus components of size evolution during mass extinction, recovery, and background intervals: a case study of Late Permian through Middle Triassic foraminifera. Paleobiology 38:627643.CrossRefGoogle Scholar
Schmidt-Nielsen, K. 1984. Scaling: why is animal size so important?. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7:3653.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1996. Competition in macroevolution: the double wedge revisited. Pp. 211255in D. Jablonski, D. H. Erwin, and J. H. Lipps, eds. Evolutionary paleobiology. University of Chicago Press, Chicago.Google Scholar
Sepkoski, J. J. Jr. 2002. A compendium of fossil marine animal genera. Bulletins of American Paleontology 364:1560.Google Scholar
Sepkoski, J. J. Jr., and Miller, A. I.. 1985. Evolutionary faunas and the distribution of Paleozoic marine communities in space and time. Pp. 153190in J. W. Valentine, ed. Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press, Princeton, N.J.Google Scholar
Smith, A. B., and Jeffery, C. H.. 1998. Selectivity of extinction among sea urchins at the end of the Cretaceous period. Nature 392:6971.CrossRefGoogle Scholar
Sperling, E. A., Frieder, C. A., Raman, A. V., Girguis, P. R., Levin, L. A., and Knoll, A. H.. 2013. Oxygen, ecology, and the Cambrian radiation of animals. Proceedings of the National Academy of Sciences USA 110:1344613451.CrossRefGoogle ScholarPubMed
Stanley, S. M. 1973a. Explanation for Cope’s Rule. Evolution 27:126.CrossRefGoogle ScholarPubMed
Stanley, S. M. 1973b. An ecological theory for the sudden origin of multicellular life in the late Precambrian. Proceedings of the National Academy of Sciences USA 70:14861489.CrossRefGoogle ScholarPubMed
Trammer, J. 2005. Maximum body size in a radiating clade as a function of time. Evolution 59:941947.Google Scholar
Trammer, J., and Kaim, A.. 1997. Body size and diversity exemplified by three trilobite clades. Acta Palaeontologica Polonica 42:112.Google Scholar
Twitchett, R. J. 2007. The Lilliput effect in the aftermath of the end-Permian extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology 252:132144.CrossRefGoogle Scholar
Twitchett, R. J., and Oji, T.. 2005. Early Triassic recovery of echinoderms. Comptes Rendus Palevol 4:531542.CrossRefGoogle Scholar
Vermeij, G. J. 1995. Economics, volcanoes, and Phanerozoic revolutions. Paleobiology 21:125152.CrossRefGoogle Scholar
Vermeij, G. J. 2004. Nature: an economic history. Princeton University Press, Princeton, N.J.CrossRefGoogle Scholar
Wagner, P. J., Kosnik, M. A., and Lidgard, S.. 2006. Abundance distributions imply elevated compexity of post-Paleozoic marine ecosystems. Science 314:12891292.CrossRefGoogle Scholar
Williams, A., Brunton, C. H. C., and Carlson, S. J. eds. 1997. Brachiopoda 1, Introduction. Part H of R. L. Kaesler, ed. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo., and University of Kansas, Lawrence.Google Scholar
Williams, A., Brunton, C. H. C., and Carlson, S. J. eds. 2000a. Brachiopoda 2, Linguliformea, Craniiformea, and Rhynchonelliformea (part). Part H of R. L. Kaesler, ed. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo., and University of Kansas, Lawrence.Google Scholar
Williams, A., Brunton, C. H. C., and Carlson, S. J. eds. 2000b. Brachiopoda 3, Linguliformea, Craniiformea, and Rhynchonelliformea (part). Part H of R. L. Kaesler, ed. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo., and University of Kansas, Lawrence.Google Scholar
Williams, A., Brunton, C. H. C., and Carlson, S. J. eds. 2000c. Brachiopoda 4, Rhynchonelliformea (part). Part H of R. L. Kaesler, ed. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo., and University of Kansas, Lawrence.Google Scholar
Williams, A., Brunton, C. H. C., and Carlson, S. J. eds. 2006. Brachiopoda 5, Rhynchonelliformea (part). Part H of R. L. Kaesler, ed. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo., and University of Kansas, Lawrence.Google Scholar
Williams, A., Brunton, C. H. C., and Carlson, S. J. eds. 2007. Brachiopoda 6, Supplement. Part H of P. A. Selden, ed. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo., and University of Kansas, Lawrence.Google Scholar
Wright, V. P., Cherns, L., and Hodges, P.. 2003. Missing molluscs: filed testing taphonomic loss in the Mesozoic through early large-scale aragonite dissolution. Geology 31:211214.2.0.CO;2>CrossRefGoogle Scholar