Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T17:57:46.010Z Has data issue: false hasContentIssue false

A quantitative analysis of environmental associations in sauropod dinosaurs

Published online by Cambridge University Press:  08 April 2016

Philip D. Mannion
Affiliation:
Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, United Kingdom. E-mail: p.mannion@ucl.ac.uk
Paul Upchurch
Affiliation:
Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, United Kingdom. E-mail: p.upchurch@ucl.ac.uk

Abstract

Both the body fossils and trackways of sauropod dinosaurs indicate that they inhabited a range of inland and coastal environments during their 160-Myr evolutionary history. Quantitative paleoecological analyses of a large data set of sauropod occurrences reveal a statistically significant positive association between non-titanosaurs and coastal environments, and between titanosaurs and inland environments. Similarly, “narrow-gauge” trackways are positively associated with coastal environments and “wide-gauge” trackways are associated with inland environments. The statistical support for these associations suggests that this is a genuine ecological signal: non-titanosaur sauropods preferred coastal environments such as carbonate platforms, whereas titanosaurs preferred inland environments such as fluvio-lacustrine systems. These results remain robust when the data set is time sliced and jackknifed in various ways. When the analyses are repeated using the more inclusive groupings of titanosauriforms and Macronaria, the signal is weakened or lost. These results reinforce the hypothesis that “wide-gauge” trackways were produced by titanosaurs. It is commonly assumed that the trackway and body fossil records will give different results, with the former providing a more reliable guide to the habitats occupied by extinct organisms because footprints are produced during life, whereas carcasses can be transported to different environments prior to burial. However, this view is challenged by our observation that separate body fossil and trackway data sets independently support the same conclusions regarding environmental preferences in sauropod dinosaurs. Similarly, analyzing localities and individuals independently results in the same environmental associations. We demonstrate that conclusions about environmental patterns among fossil taxa can be highly sensitive to an investigator's choices regarding analytical protocols. In particular, decisions regarding the taxonomic groupings used for comparison, the time range represented by the data set, and the criteria used to identify the number of localities can all have a marked effect on conclusions regarding the existence and nature of putative environmental associations. We recommend that large data sets be explored for such associations at a variety of different taxonomic and temporal scales.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aberhan, M., Bussert, R., Heinrich, W.-D., Schrank, E., Schultka, S., Sames, B., Kriwet, J., and Kapilima, S. 2002. Paleoecology and depositional environments of the Tendaguru Beds (Late Jurassic to Early Cretaceous, Tanzania). Mitteilungen aus dem Museum für Naturkunde in Berlin, Geowissenschaftliche Reihe 5:1742.Google Scholar
Apesteguía, S. 2005. Evolution of the hyposphene-hypantrum complex within Sauropoda. Pp. 248267 in Carpenter, and Tidwell, 2005.Google Scholar
Badgley, C. E. 1986. Counting individuals in mammalian fossil assemblages from fluvial environments. Palaios 1:328338.CrossRefGoogle Scholar
Barrett, P. M., and Upchurch, P. 2005. Sauropod diversity through time: possible macroevolutionary and paleoecological implications. Pp. 125156 in Rogers, Curry and Wilson, 2005.Google Scholar
Barrett, P. M., McGowan, A. J., and Page, V. 2009. Dinosaur diversity and the rock record. Proceedings of the Royal Society B 276:26672674.Google Scholar
Blower, J. G., Cook, L. M., and Bishop, J. A. 1981. Estimating the size of animal populations. Allen and Unwin, London.Google Scholar
Bonaparte, J. F., Heinrich, W.-D., and Wild, R. 2000. Review of Janenschia Wild, with the description of a new sauropod from the Tendaguru beds of Tanzania and a discussion on the systematic value of procoelous caudal vertebrae in the Sauropoda. Palaeontographica, Abteilung A 256:2576.CrossRefGoogle Scholar
Borsuk-Bialynicka, M. 1977. A new camarasaurid sauropod Opisthocoelicaudia skarzynskii, gen. n., sp. n. from the Upper Cretaceous of Mongolia. Paleontologica Polonica 37:164.Google Scholar
Buffetaut, E., Suteethorn, V., Cuny, G., Tong, H., Le Loeuff, J., Khansubha, S., and Jongautchariyakul, S. 2000. The earliest known sauropod dinosaur. Nature 407:7274.Google Scholar
Burnham, K. P., and Overton, W. S. 1979. Robust estimation of population size when capture probabilities vary among animals. Ecology 60:927936.Google Scholar
Butler, R. J., and Barrett, P. M. 2008. Paleoenvironmental controls on the distribution of Cretaceous herbivorous dinosaurs. Naturwissenschaften 95:10271032.Google Scholar
Butler, R. J., Barrett, P. M., Kenrick, P., and Penn, M. G. 2007. Paleoenvironmental controls on the distribution of Cretaceous herbivorous dinosaurs. Journal of Vertebrate Paleontology 27(Suppl. to No. 3):54A55A.Google Scholar
Butler, R. J., Barrett, P. M., Nowbath, S., and Upchurch, P. 2009. Estimating the effects of the rock record on pterosaur diversity patterns: implications for hypotheses of bird/pterosaur competitive replacement. Paleobiology 35:432446.CrossRefGoogle Scholar
Calvo, J. O. 1994. Jaw mechanics in sauropod dinosaurs. In Lockley, M. G., dos Santos, V. F., Meyer, C. A., and Hunt, A. P., eds. Aspects of sauropod paleobiology. GAIA 10:183193.Google Scholar
Carpenter, K., and Tidwell, V. 2005. Thunder lizards: the sauropodomorph dinosaurs. Indiana University Press, Bloomington.Google Scholar
Carrano, M. T. 2008. Taxonomy and classification of non-avian Dinosauria. Paleobiology Database Online Systematics Archive 4 (www.paleodb.org).Google Scholar
Carrano, M. T., and Wilson, J. A. 2001. Taxon distributions and the vertebrate track record. Paleobiology 27:563581.Google Scholar
Carvalho, I. S., Avilla, L. S., and Salgado, L. 2003. Amazonsaurus maranhensis gen. et sp. nov. (Sauropoda, Diplodocoidea) from the Lower Cretaceous (Aptian–Albian) of Brazil. Cretaceous Research 24:697713.Google Scholar
Chao, A. 1987. Estimating the population size for capture-recapture data with unequal capturability. Biometrics 43:783791.Google Scholar
Colwell, R. K., and Coddington, J. A. 1994. Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society of London B 345:101118.Google Scholar
Rogers, K. A. Curry 2005. Titanosauria: a phylogenetic overview. Pp. 50103 in Rogers, Curry and Wilson, 2005.Google Scholar
Rogers, K. A. Curry, and Forster, C. A. 2001. The last of the dinosaur titans: a new sauropod from Madagascar. Nature 412:530534.Google Scholar
Rogers, K. A. Curry, and Forster, C. A. 2004. The skull of Rapetosaurus krausei (Sauropoda: Titanosauria) from the Late Cretaceous of Madagascar. Journal of Vertebrate Paleontology 24:121144.CrossRefGoogle Scholar
Rogers, K. A. Curry, and Wilson, J. A. 2005. The sauropods: evolution and paleobiology. University of California Press, Berkeley.Google Scholar
Davis, E. B., and Pyenson, N. D. 2007. Diversity biases in terrestrial mammalian assemblages and quantifying the differences between museum collections and published accounts: a case study from the Miocene of Nevada. Palaeogeography, Palaeoclimatology, Palaeoecology 250:139149.Google Scholar
Day, J. J., Upchurch, P., Norman, D. B., Gale, A. S., and Powell, H. P. 2002. Sauropod trackways, evolution, and behavior. Science 296:1659.Google Scholar
Day, J. J., Norman, D. B., Gale, A. S., Upchurch, P., and Powell, H. P. 2004. A Middle Jurassic dinosaur trackway site from Oxfordshire, UK. Palaeontology 47:319348.CrossRefGoogle Scholar
De Francesco, C. G., and Hassan, G. S. 2008. Dominance of reworked fossil shells in modern estuarine environments: implications for paleoenvironmental reconstructions based on biological remains. Palaios 23:1423.Google Scholar
Dodson, P., Behrensmeyer, A. K., Bakker, R. T., and McIntosh, J. S. 1980. Taphonomy and paleoecology of the dinosaur beds of the Jurassic Morrison Formation. Paleobiology 6:208232.Google Scholar
Farlow, J. O., Pittman, J. G., and Hawthorne, J. M. 1989. Brontopodus birdi, Lower Cretaceous sauropod footprints from the U.S. Gulf Coastal Plain. Pp. 371394 in Gillette, D. D. and Lockley, M. G., eds. Dinosaur tracks and traces. Cambridge University Press, Cambridge.Google Scholar
Gilinsky, N. L., and Bennington, J. B. 1994. Estimating numbers of whole individuals from collections of body parts: a taphonomic limitation of the paleontological record. Paleobiology 20:245258.Google Scholar
Gradstein, F. M., Ogg, J. G., and Smith, A. G. 2004. A geological timescale 2004. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Grayson, D. K. 1973. On the methodology of faunal analysis. American Antiquity 39:432439.Google Scholar
Hammer, Ø., and Harper, D. A. T. 2006. Paleontological data analysis. Blackwell, Oxford.Google Scholar
Harrington, G. J., and Jaramillo, C. A. 2007. Paratropical floral extinction in the Late Paleocene–Early Eocene. Journal of the Geological Society, London 164:323332.Google Scholar
Henderson, D. M. 2006. Burly gaits: centers of mass, stability, and the trackways of sauropod dinosaurs. Journal of Vertebrate Paleontology 26:907921.Google Scholar
Hunn, C. A., and Upchurch, P. 2001. The importance of time/space in diagnosing the causality of phylogenetic events: towards a “chronobiogeographical” paradigm? Systematic Biology 50:117.Google Scholar
Hutchinson, J. R., Ng-Thow-Hing, V., and Anderson, F. C. 2007. A 3D interactive method for estimating body segmental parameters in animals: application to the turning and running performance of Tyrannosaurus rex . Journal of Theoretical Biology 246:660680.Google Scholar
Jacobs, L. L., Winkler, D. A., Downs, W. R., and Gomani, E. M. 1993. New material of an Early Cretaceous titanosaurid sauropod dinosaur from Malawi. Paleontology 36:523534.Google Scholar
Janensch, W. 1929. Material und Formegehalt der Sauropoden in der Ausbeute der Tendaguru-Expedition, 1909–1912. Palaeontographica 2(Suppl. VII):334.Google Scholar
Krebs, C. J. 1999. Ecological methodology, 2d ed. Addison-Wesley Longman, Menlo Park, Calif. Google Scholar
Lee, Y.-N., Yang, S.-Y., Seo, S.-J., Baek, K.-S., Lee, D.-J., Park, E.-J., and Han, S.-W. 2000. Distribution and paleobiological significance of dinosaur tracks in the Jindong Formation (Albian) in Kosong County, Korea. Paleontological Society of Korea Special Publication 4:112.Google Scholar
Lehman, T. M. 1987. Late Maastrichtian paleoenvironments and dinosaur biogeography in the western interior of North America. Palaeogeography, Palaeoclimatology, Palaeoecology 60:189217.Google Scholar
Lieberman, B. S. 2000. Paleobiogeography: using fossils to study global change, plate tectonics, and evolution. Kluwer Academic /Plenum, New York.Google Scholar
Lim, S.-K., Yang, S.-Y., and Lockley, M. G. 1989. Large dinosaur footprint assemblages from the Cretaceous Jindong Formation of southern Korea. Pp. 333336 in Gillette, D. D. and Lockley, M. G., eds. Dinosaur tracks and traces. Cambridge University Press, Cambridge.Google Scholar
Lockley, M. G. 1991. Tracking dinosaurs: a new look at an ancient world. Cambridge University Press, Cambridge.Google Scholar
Lockley, M. G., Meyer, C. A., Hunt, A. P., and Lucas, S. 1994. The distribution of sauropod tracks and trackmakers. In Lockley, M. G., dos Santos, V. F., Meyer, C. A., and Hunt, A. P., eds. Aspects of sauropod paleobiology. GAIA 10:233248.Google Scholar
Lockley, M. G., Houck, K., Yang, S.-Y., Matsukawa, M., and Lim, S.-K. 2006. Dinosaur-dominated footprint assemblages from the Cretaceous Jindong Formation, Hallayo Haesang National Park, Goseong County, South Korea: evidence and implications. Cretaceous Research 27:20101.Google Scholar
Lucas, S. G., and Hunt, A. P. 1989. Alamosaurus and the sauropod hiatus in the Cretaceous of the North American western interior. In Farlow, J. O., ed. Paleobiology of the dinosaurs. Geological Society of America Special Paper 238:7585.Google Scholar
McGowan, A. J., and Smith, A. B. 2008. Are global Phanerozoic marine diversity curves truly global? A study of the relationship between regional rock records and global Phanerozoic marine diversity. Paleobiology 34:80103.Google Scholar
McIntosh, J. S. 1990. Sauropoda. Pp. 345401 in Weishampel, D. B., Dodson, P., and Osmólska, H., eds. The Dinosauria, 1st ed. University of California Press, Berkeley.Google Scholar
Milan, J., and Bromley, R. G. 2006. True tracks, undertracks and eroded tracks, experimental work with tetrapod tracks in laboratory and field. Palaeogeography, Palaeoclimatology, Palaeoecology 231:253264.CrossRefGoogle Scholar
Ostrom, J. H., and McIntosh, J. S. 1966. Marsh's dinosaurs. Yale University Press, New Haven, Conn. Google Scholar
Peters, S. E. 2005. Geological constraints on the macroevolutionary history of marine animals. Proceedings of the National Academy of Sciences USA 102:12,32612,331.Google Scholar
Peters, S. E. 2008. Environmental determinants of extinction selectivity in the fossil record. Nature 454:626629.Google Scholar
Peters, S. E., and Bork, K. B. 1999. Species-abundance models: an ecological approach to inferring paleoenvironment and resolving paleoecological change in the Waldron Shale (Silurian). Palaios 14:234245.Google Scholar
Peters, S. E., and Foote, M. 2001. Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology 27:583601.Google Scholar
Peters, S. E., and Foote, M. 2002. Determinants of extinction in the fossil record. Nature 416:420424.Google Scholar
Powell, J. E. 1992. Osteología de Saltasaurus loricatus (Sauropoda-Titanosauridae) del Cretácico Superior del Noroeste Argentino. Pp. 165230 in Sanz, J. L. and Buscalioni, A. D., eds. Los dinosaurios y su entorno biotico. Instituto “Juan de Valdes,” Cuenca, Spain.Google Scholar
Raup, D. M. 1972. Taxonomic diversity during the Phanerozoic. Science 177:10651071.Google Scholar
Rice, W. R. 1989. Analyzing tables of statistical tests. Evolution 43:223225.Google Scholar
Ronquist, F. 1997. Dispersal–vicariance analysis: a new biogeographic approach to the quantification of historical biogeography. Systematic Biology 46:195203.Google Scholar
Russell, D., Beland, P., and McIntosh, J. S. 1980. Paleoecology of the dinosaurs of Tendaguru (Tanzania). Mémoires de la Société Géologique de France 139:169175.Google Scholar
Salgado, L. 2001. Los sauröpodos de Patagonia: sistemátuca, evolucíon y paleobiología. Pp. 139168 in Actas de Las II Journadas Internacionales sobre Paleontología de Dinosaurios y su Entorno. Salas de los Infantes, Burgos, Spain.Google Scholar
Salgado, L., Coria, R. A., and Calvo, J. O. 1997. Evolution of titanosaurid sauropods. I. Phylogenetic analysis based on the postcranial evidence. Ameghiniana 34:332.Google Scholar
Scholz, H., and Hartman, J. H. 2007. Paleoenvironmental reconstruction of the Upper Cretaceous Hell Creek Formation of the Williston Basin, Montana, USA: implications from the quantitative analysis of unionoid bivalve taxonomic diversity and morphologic disparity. Palaios 22:2434.Google Scholar
Sepkoski, J. J. Jr. 1984. A kinematic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology 10:246267.Google Scholar
Sereno, P. C. 1999. The evolution of dinosaurs. Science 284:21372147.Google Scholar
Smith, A. B. 2001. Large-scale heterogeneity of the fossil record: implications for Phanerozoic biodiversity studies. Philosophical Transactions of the Royal Society of London B 356:351367.Google Scholar
Smith, A. B., and McGowan, A. J. 2007. The shape of the Phanerozoic marine paleodiversity curve: how much can be predicted from the sedimentary rock record of Western Europe? Paleontology 50:765774.Google Scholar
Sokal, R. R., and Rohlf, F. J. 1987. Introduction to biostatistics. W. H. Freeman, New York.Google Scholar
Sutherland, W. J. 2006. Ecological census techniques: a handbook, 2d ed. Cambridge University Press, Cambridge.Google Scholar
Thulborn, R. A. 1982. Speeds and gaits of dinosaurs. Palaeogeography, Palaeoclimatology, Palaeoecology 38:227256.Google Scholar
Upchurch, P. 1995. Evolutionary history of sauropod dinosaurs. Philosophical Transactions of the Royal Society of London B 349:365390.Google Scholar
Upchurch, P. 1999. The phylogenetic relationships of the Nemegtosauridae (Saurischia, Sauropoda). Journal of Vertebrate Paleontology 19:106125.Google Scholar
Upchurch, P., and Barrett, P. M. 2000. The evolution of sauropod feeding mechanisms. Pp. 79122 in Sues, H.-D., ed. The evolution of herbivory in terrestrial vertebrates: perspectives from the fossil record. Cambridge University Press, Cambridge.Google Scholar
Upchurch, P., and Barrett, P. M. 2005. A phylogenetic perspective on sauropod diversity. Pp. 104124 in Rogers, Curry and Wilson, 2005.Google Scholar
Upchurch, P., Hunn, C. A., and Norman, D. B. 2002. An analysis of dinosaurian biogeography: evidence for the existence of vicariance and dispersal patterns caused by geological events. Proceedings of the Royal Society of London B 269:613622.Google Scholar
Upchurch, P., Barrett, P. M., and Dodson, P. 2004. Sauropoda. Pp. 259322 in Weishampel, et al., 2004b.CrossRefGoogle Scholar
Waite, S. 2000. Statistical ecology in practice: a guide to analysing environmental and ecological field data. Pearson Education Limited, Harlow, U.K. Google Scholar
Weishampel, D. B., Barrett, P. M., Coria, R. E., Le Loeuff, J., Gomani, E. S., Zhao, Z., Xu, X., Sahni, A., and Noto, C. 2004a. Dinosaur distribution. Pp. 517606 in Weishampel, et al., 2004b.Google Scholar
Weishampel, D. B., Dodson, P., and Osmólska, H., eds. 2004b. The Dinosauria, 2d ed. University of California Press, Berkeley.Google Scholar
Wilson, J. A. 2002. Sauropod dinosaur phylogeny: critique and cladistic analysis. Zoological Journal of the Linnean Society 136:217276.Google Scholar
Wilson, J. A. 2005a. Integrating ichnofossils and body fossil records to estimate locomotor posture and spatiotemporal distribution of early sauropod dinosaurs: a stratocladistic approach. Paleobiology 31:400423.Google Scholar
Wilson, J. A. 2005b. A redescription of the skull of Nemegtosaurus mongoliensis (Dinosauria—Sauropoda) and its relevance to Cretaceous titanosaur diversity. Journal of Systematic Paleontology 3:283318.Google Scholar
Wilson, J. A., and Carrano, M. T. 1999. Titanosaurs and the origin of “wide-gauge” trackways: a biomechanical and systematic perspective on sauropod locomotion. Paleobiology 25:252267.CrossRefGoogle Scholar
Wilson, J. A., and Sereno, P. C. 1998. Early evolution and higher-level phylogeny of sauropod dinosaurs. Society of Vertebrate Paleontology Memoir 5:168.CrossRefGoogle Scholar
Wilson, J. A., and Upchurch, P. 2003. A revision of Titanosaurus (Dinosauria Sauropoda), the first “Gondwanan” dinosaur genus. Journal of Systematic Paleontology 1:125–60.Google Scholar
Wilson, J. A., and Upchurch, P. 2009. Redescription and reassessment of the phylogenetic affinities of Euhelopus zdanskyi (Dinosauria: Sauropoda) from the Late Jurassic or Early Cretaceous of China. Journal of Systematic Paleontology 7:199239.Google Scholar
Wright, J. L. 2005. Steps in understanding sauropod biology: the importance of sauropod tracks. Pp. 252284 in Rogers, Curry and Wilson, 2005.Google Scholar
Yates, A. M., and Kitching, J. W. 2003. The earliest known sauropod dinosaur and the first steps towards sauropod locomotion. Proceedings of the Royal Society of London B 270:17531758.Google Scholar
Supplementary material: File

Mannion and Upchurch supplementary material

Supplementary Material

Download Mannion and Upchurch supplementary material(File)
File 520.2 KB