Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T06:27:12.922Z Has data issue: false hasContentIssue false

Acanthamoeba spp. monoclonal antibody against a CPA2 transporter: a promising molecular tool for acanthamoebiasis diagnosis and encystment study

Published online by Cambridge University Press:  21 September 2020

Michele Martha Weber-Lima
Affiliation:
Laboratório de Imunoquímica, Departamento de Patologia Básica, Universidade Federal do Paraná, Curitiba-PR, Brazil
Bianca Prado-Costa
Affiliation:
Laboratório de Imunoquímica, Departamento de Patologia Básica, Universidade Federal do Paraná, Curitiba-PR, Brazil
Alessandra Becker-Finco
Affiliation:
Laboratório de Imunoquímica, Departamento de Patologia Básica, Universidade Federal do Paraná, Curitiba-PR, Brazil
Adriana Oliveira Costa
Affiliation:
Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte-MG, Brazil
Philippe Billilad
Affiliation:
IPSIT, School of Pharmacy, University Paris-Saclay, Châtenay-Malabry, France
Cinthia Furst
Affiliation:
Departamento de Patologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
Juliana Ferreira de Moura
Affiliation:
Laboratório de Imunoquímica, Departamento de Patologia Básica, Universidade Federal do Paraná, Curitiba-PR, Brazil
Larissa Magalhães Alvarenga*
Affiliation:
Laboratório de Imunoquímica, Departamento de Patologia Básica, Universidade Federal do Paraná, Curitiba-PR, Brazil
*
Author for correspondence: Larissa Magalhães Alvarenga, E-mail: lmalvarenga@ufpr.br; lmalvarenga@gmail.com

Abstract

Free-living amoeba of the genus Acanthamoeba are ubiquitous protozoa involved in opportunistic and non-opportunistic infection in humans, such as granulomatous amoebic encephalitis and amoebic keratitis. Both infections have challenging characteristics such as the formation of the resistant cysts in infected tissues, hampering the treatment and most usual diagnosis depending on time-consuming and/or low sensitivity techniques. The use of monoclonal antibodies presents itself as an opportunity for the development of more effective alternative diagnostic methods, as well as an important and useful tool in the search for new therapeutic targets. This study investigated the possibility of using a previously produced monoclonal antibody (mAb3), as a diagnostic tool for the detection of Acanthamoeba trophozoites by direct and indirect flow cytometry and immunofluorescence. Immunoprecipitation assay and mass spectrometry allowed the isolation of the antibody's target and suggested it is a transporter part of the CPA (cation: proton antiporter) superfamily. In vitro tests indicate an important role of this target in Acanthamoeba's encystment physiology. Our results support the importance of studying the role of CPA2 transporters in the context of acanthamoebiasis, as this may be a way to identify new therapeutic candidates.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Those authors contributed equally for the manuscript

References

Alsam, S, Sissons, J, Jayasekera, S and Khan, NA (2005) Extracellular proteases of Acanthamoeba castellanii (encephalitis isolate belonging to T1 genotype) contribute to increased permeability in an in vitro model of the human blood–brain barrier. Journal of Infection 51, 150156.CrossRefGoogle Scholar
Andreotti, PE, Ludwig, GV, Peruski, AH, Tuite, JJ, Morse, SS and Peruski, LF (2003) Immunoassay of infectious agents. BioTechniques 35, 850859.CrossRefGoogle ScholarPubMed
Becker-Finco, A, Costa, AO, Silva, SK, Ramada, JS, Furst, C, Stinghen, AE, De Figueiredo, BC, De Moura, J and Alvarenga, LM (2013) Physiological, morphological, and immunochemical parameters used for the characterization of clinical and environmental isolates of Acanthamoeba. Parasitology 140, 396405.CrossRefGoogle ScholarPubMed
Bradbury, A and Plückthun, A (2015) Reproducibility: standardize antibodies used in research. Nature 518, 2729.CrossRefGoogle ScholarPubMed
Bunsuwansakul, C, Mahboob, T, Hounkong, K, Laohaprapanon, S, Chitapornpan, S, Jawjit, S, Yasiri, A, Barusrux, S, Bunluepuech, K, Sawangjaroen, N, Salibay, CC, Kaewjai, C, de Pereira, ML and Nissapatorn, V (2019) Acanthamoeba in Southeast Asia – overview and challenges. The Korean Journal of Parasitology 57, 341357.CrossRefGoogle ScholarPubMed
Carnt, N, Hoffman, JJ, Verma, S, Hau, S, Radford, CF, Minassian, DC and Dart, JKG (2018) Acanthamoeba keratitis: confirmation of the UK outbreak and a prospective case-control study identifying contributing risk factors. British Journal of Ophthalmology 102, 16211628.CrossRefGoogle Scholar
Chávez-Munguía, B, Salazar-Villatoro, L, Lagunes-Guillén, A, Omaña-Molina, M, Espinosa-Cantellano, M and Martínez-Palomo, A (2013) Acanthamoeba castellanii cysts: new ultrastructural findings. Parasitology Research 112, 11251130.CrossRefGoogle ScholarPubMed
Cirelli, C, Mesquita, EIS, Chagas, IAR, Furst, C, Possamai, CO, Abrahão, JS, dos Santos Silva, LK, Grossi, MF, Tagliati, CA and Costa, AO (2020) Extracellular protease profile of Acanthamoeba After prolonged axenic culture and after interaction with MDCK cells. Parasitology Research 119, 659666.CrossRefGoogle ScholarPubMed
Da Rocha-Azevedo, B and Costa e Silva-Filho, F (2007) Biological characterization of a clinical and an environmental isolate of Acanthamoeba Polyphaga: analysis of relevant parameters to decode pathogenicity. Archives of Microbiology 188, 441449.CrossRefGoogle Scholar
Dart, JKG, Saw, VPJ and Kilvington, S (2009) Acanthamoeba keratitis: diagnosis and treatment update 2009. American Journal of Ophthalmology 148, 487499.e2.CrossRefGoogle ScholarPubMed
Delmonte, OM and Fleisher, TA (2019) Flow cytometry: surface markers and beyond. Journal of Allergy and Clinical Immunology 143, 528537.CrossRefGoogle ScholarPubMed
Duarte, JL, Furst, C, Klisiowicz, DR, Klassen, G and Costa, AO (2013) Morphological, genotypic, and physiological characterization of acanthamoeba isolates from keratitis patients and the domestic environment in Vitoria, Espírito Santo, Brazil. Experimental Parasitology 135, 914.CrossRefGoogle ScholarPubMed
Duggal, S, Rongpharpi, S, Duggal, A, Kumar, A and Biswal, I (2017) Role of Acanthamoeba in granulomatous encephalitis: a review. Journal of Infectious Diseases & Immune Therapies 1, 112.Google Scholar
Eisen, JA, Coyne, RS, Wu, M, Wu, D, Thiagarajan, M, Wortman, JR, Badger, JH, Ren, Q, Amedeo, P, Jones, KM, Tallon, LJ, Delcher, AL, Salzberg, SL, Silva, JC, Haas, BJ, Majoros, WH, Farzad, M, Carlton, JM, Smith, RK Jr, Garg, J, Pearlman, RE, Karrer, KM, Sun, L, Manning, G, Elde, NC, Turkewitz, AP, Asai, DJ, Wilkes, DE, Wang, Y, Cai, H, Collins, K, Stewart, BA, Lee, SR, Wilamowska, K, Weinberg, Z, Ruzzo, WL, Wloga, D, Gaertig, J, Frankel, J, Tsao, CC, Gorovsky, MA, Keeling, PJ, Waller, RE, Patron, NJ, Cherry, JM, Stover, NA, Krieger, CJ, del Toro, C, Ryder, HF, Williamson, SC, Barbeau, RA, Hamilton, EP and Orias, E (2006) Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLOS Biology 4, 16201642.CrossRefGoogle ScholarPubMed
Fields, C, O'Connell, D, Xiao, S, Lee, GU, Billiald, P and Muzard, J (2013) Creation of recombinant antigen-binding molecules derived from hybridomas secreting specific antibodies. Nature Protocols 8, 11251148.CrossRefGoogle ScholarPubMed
Fiori, PL, Mattana, A, Dessì, D, Conti, S, Magliani, W and Polonelli, L (2006) In vitro acanthamoebicidal activity of a killer monoclonal antibody and a synthetic peptide. Journal of Antimicrobial Chemotherapy 57, 891898.CrossRefGoogle Scholar
Fujisawa, M, Ito, M and Krulwich, TA (2007) Three two-component transporters with channel-like properties have monovalent cation/proton antiport activity. Proceedings of the National Academy of Sciences 104, 1328913294.CrossRefGoogle ScholarPubMed
Healy, J, Ekkerman, S, Pliotas, C, Richard, M, Bartlett, W, Grayer, SC, Morris, GM, Miller, S and Booth, IR (2014) Understanding the structural requirements for activators of the Kef bacterial potassium efflux system. Biochemistry 53, 19821992.CrossRefGoogle ScholarPubMed
Kalra, SK, Sharma, P, Shyam, K, Tejan, N and Ghoshal, U (2020) Acanthamoeba and its pathogenic role in granulomatous amebic encephalitis. Experimental Parasitology 208, 107788.CrossRefGoogle ScholarPubMed
Kang, AY, Park, AY, Shin, HJ, Khan, NA, Maciver, SK and Jung, SY (2018) Production of a monoclonal antibody against a mannose-binding protein of Acanthamoeba Culbertsoni and its localization. Experimental Parasitology 192, 1924.CrossRefGoogle ScholarPubMed
Karim-Silva, S, Moura, JF, Noiray, M, Minozzo, JC, Aubrey, N, Alvarenga, LM and Billiald, P (2016) Generation of recombinant antibody fragments with toxin-neutralizing potential in loxoscelism. Immunology Letters 176, 9096.CrossRefGoogle ScholarPubMed
Khan, NA, Greenman, J, Topping, KP, Hough, VC, Temple, GS and Paget, TA (2000) Isolation of Acanthamoeba-Specific Antibodies from a Bacteriophage Display Library. Journal of Clinical Microbiology 38, 23742377.CrossRefGoogle ScholarPubMed
Laemmli, UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680685.CrossRefGoogle ScholarPubMed
Lakhundi, S, Siddiqui, R and Khan, N (2015) Cellulose degradation: a therapeutic strategy in the improved treatment of Acanthamoeba Infections. Parasites & Vectors 8, 116.CrossRefGoogle ScholarPubMed
Lorenzo-Morales, J, Kliescikova, J, Martinez-Carretero, E, De Pablos, LM, Profotova, B, Nohynkova, E, Osuna, A and Valladares, B (2008) Glycogen phosphorylase in Acanthamoeba Spp.: determining the role of the enzyme during the encystment process using RNA interference. Eukaryotic Cell 7, 509517.CrossRefGoogle ScholarPubMed
Lorenzo-Morales, J, Martín-Navarro, CM, López-Arencibia, A, Arnalich-Montiel, F, Piñero, JE and Valladares, B (2013) Acanthamoeba keratitis: an emerging disease gathering importance worldwide? Trends in Parasitology 29, 181187.CrossRefGoogle ScholarPubMed
Lorenzo-Morales, J, Khan, NA and Walochnik, J (2015) An update on Acanthamoeba keratitis: diagnosis, pathogenesis and treatment. Parasite 22, 10.CrossRefGoogle Scholar
Maciver, SK, Asif, M, Simmen, MW and Lorenzo-Morales, J (2013) A systematic analysis of Acanthamoeba genotype frequency correlated with source and pathogenicity: t4 is confirmed as a pathogen-rich genotype. European Journal of Protistology 49, 217221.CrossRefGoogle ScholarPubMed
Magliano, AC, Teixeira, MM and Alfieri, SC (2012) Revisiting the Acanthamoeba species that form star-shaped cysts (genotypes T7, T8, T9, and T17): characterization of seven new Brazilian environmental isolates and phylogenetic inferences. Parasitology 139, 4552.CrossRefGoogle ScholarPubMed
Magnet, A, Galván, AL, Fenoy, S, Izquierdo, F, Rueda, C, Fernandez Vadillo, C, Pérez-Irezábal, J, Bandyopadhyay, K, Visvesvara, GS, da Silva, AJ and del Aquila, C (2012) Molecular characterization of Acanthamoeba Isolated in water treatment plants and comparison with clinical isolates. Parasitology Research 111, 383392.CrossRefGoogle ScholarPubMed
Marciano-Cabral, F and Cabral, G (2003) Acanthamoeba spp. as agents of disease in humans. Clinical Microbiology Reviews 16, 273307.CrossRefGoogle ScholarPubMed
Martín-Navarro, CM, Lorenzo-Morales, J, Machin, RP, López-Arencibia, A, García-Castellano, JM, de Fuentes, I, Loftus, B, Maciver, SK, Valladares, B and Piñero, JE (2013) Inhibition of 3-hydroxy-3-methylglutaryl–coenzyme A reductase and application of statins as a novel effective therapeutic approach against Acanthamoeba infections. Antimicrobial Agents and Chemotherapy 57, 375381.CrossRefGoogle ScholarPubMed
Martín-Navarro, CM, Lorenzo-Morales, J, López-Arencibia, A, Reyes-Batlle, M, Piñero, JE, Valladares, B and Maciver, SK (2014) Evaluation of Acanthamoeba myosin-IC as a potential therapeutic target. Antimicrobial Agents and Chemotherapy 58, 21502155.CrossRefGoogle ScholarPubMed
Mascarenhas, J, Lalitha, P, Prajna, NV, Srinivasan, M, Das, M, D'Silva, SS, Oldenburg, CE, Borkar, DS, Esterberg, EJ, Lietman, TM and Keenan, JD (2014) Acanthamoeba, fungal, and bacterial keratitis: a comparison of risk factors and clinical features. American Journal of Ophthalmology 157, 5662.CrossRefGoogle ScholarPubMed
Mohan, A, Padiadpu, J, Baloni, P and Chandra, N (2015) Complete genome sequences of a Mycobacterium smegmatis laboratory strain (MC2 155) and isoniazid-resistant (4XR1/R2) mutant strains. Genome Announcements 3, e1520–e1514.Google ScholarPubMed
Muinao, T, Pal, M and Boruah, HPD (2018) Cytosolic and transmembrane protein extraction methods of breast and ovarian cancer cells: a comparative study. Journal of Biomolecular Techniques 29, 7178.CrossRefGoogle ScholarPubMed
Ndao, M (2009) Diagnosis of parasitic diseases: old and new approaches. Interdisciplinary Perspectives on Infectious Diseases 2009, 115.CrossRefGoogle ScholarPubMed
Neelam, S and Niederkorn, JY (2017) Pathobiology and immunobiology of acanthamoeba keratitis: insights from animal models. The Yale Journal of Biology and Medicine 90, 261268.Google ScholarPubMed
Olli, K, Neubert, M and Anderson, D (2004) Encystment probability and encystment rate: new terms to quantitatively describe formation of resting cysts in planktonic microbial populations. Marine Ecology Progress Series 273, 4348.CrossRefGoogle Scholar
Pettersen, EF, Goddard, TD, Huang, CC, Couch, GS, Greenblatt, DM, Meng, EC and Ferrin, TE (2004) UCSF Chimera? A visualization system for exploratory research and analysis. Journal of Computational Chemistry 25, 16051612.CrossRefGoogle ScholarPubMed
Possamai, CO, Loss, AC, Costa, AO, Falqueto, A and Furst, C (2018) Acanthamoeba of three morphological groups and distinct genotypes exhibit variable and weakly inter-related physiological properties. Parasitology Research 117, 19951995.CrossRefGoogle ScholarPubMed
Réveiller, L, Marciano-Cabral, F, Pernin, P, Cabanes, PA and Legastelois, S (2000) Species specificity of a monoclonal antibody produced to Naegleria fowleri and partial characterization of its antigenic determinant. Parasitology Research 86, 634641.CrossRefGoogle ScholarPubMed
Rice, CA, Campbell, SJ, Bisson, C, Owen, HJ, Sedelnikova, SE, Baker, PJ, Rice, DW, Henriquez, FL and Roberts, CW (2018) Structural and functional studies of histidine biosynthesis in Acanthamoeba Spp. demonstrates a novel molecular arrangement and target for antimicrobials. PLoS ONE 13, e0198827.CrossRefGoogle ScholarPubMed
Roosild, TP, Castronovo, S, Healy, J, Miller, S, Pliotas, C, Rasmussen, T, Bartlett, W, Conway, SJ and Booth, IR (2010) Mechanism of ligand-gated potassium efflux in bacterial pathogens. Proceedings of the National Academy of Sciences 107, 1978419789.CrossRefGoogle ScholarPubMed
Sánchez, AGC, Virginio, VG, Maschio, VJ, Ferreira, HB and Rott, MB (2016) Evaluation of the immunodiagnostic potential of a recombinant surface protein domain from Acanthamoeba castellanii. Parasitology 143, 16561664.CrossRefGoogle ScholarPubMed
Scheid, PL and Balczun, C (2017) Failure of molecular diagnostics of a keratitis-inducing Acanthamoeba Strain. Experimental Parasitology 183, 236239.CrossRefGoogle ScholarPubMed
Siddiqui, M (2010) Monoclonal antibodies as diagnostics; an appraisal. Indian Journal of Pharmaceutical Sciences 72, 12.CrossRefGoogle ScholarPubMed
Siddiqui, R, Roberts, SK, Ong, TYY, Mungroo, MR, Anwar, A and Khan, NA (2019) Novel insights into the potential role of ion transport in sensory perception in Acanthamoeba. Parasites & Vectors 12, 538.CrossRefGoogle ScholarPubMed
Sissons, J, Alsam, S, Goldsworthy, G, Lightfoot, M, Jarroll, EL and Khan, NA (2006) Identification and properties of proteases from an acanthamoeba isolate capable of producing granulomatous encephalitis. BMC Microbiology 6, 42.CrossRefGoogle ScholarPubMed
Szentmáry, N, Daas, L, Shi, L, Laurik, KL, Lepper, S, Milioti, G and Seitz, B (2019) Acanthamoeba keratitis – clinical signs, differential diagnosis and treatment. Journal of Current Ophthalmology 31, 1623.CrossRefGoogle ScholarPubMed
Trabelsi, H, Dendana, F, Sellami, A, Sellami, H, Cheikhrouhou, F, Neji, S, Makni, F and Ayadi, A (2012) Pathogenic free-living amoebae: epidemiology and clinical review. Pathologie Biologie 60, 399405.CrossRefGoogle ScholarPubMed
Turner, ML, Cockerell, EJ, Brereton, HM, Badenoch, PR, Tea, M, Coster, DJ and Williams, KA (2005) Antigens of selected Acanthamoeba species detected with monoclonal antibodies. International Journal for Parasitology 35, 981990.CrossRefGoogle ScholarPubMed
Visvesvara, GS, Moura, H and Schuster, FL (2007) Pathogenic and opportunistic free-living amoebae: Acanthamoeba Spp., Balamuthia Mandrillar, Naegleria fowleri, and Sappinia diploidea. FEMS Immunology & Medical Microbiology 50, 126.CrossRefGoogle ScholarPubMed
Walochnik, J, Haller-Schober, E, Kolli, H, Picher, O, Obwaller, A and Aspock, H (2000) Discrimination between clinically relevant and non relevant Acanthamoeba Strains isolated from contact lens-wearing keratitis patients in Austria. Journal of Clinical Microbiology 38, 39323936.CrossRefGoogle Scholar
Zhao, Z, Worthylake, D, LeCour, L, Maresh, GA and Pincus, SH (2012) Crystal structure and computational modeling of the fab fragment from a protective anti-ricin monoclonal antibody. PLoS ONE 7, e52613.CrossRefGoogle ScholarPubMed