Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T23:09:41.893Z Has data issue: false hasContentIssue false

Comparison of novel and existing tools for studying drug sensitivity against the hookworm Ancylostoma ceylanicum in vitro

Published online by Cambridge University Press:  14 February 2012

LUCIENNE TRITTEN
Affiliation:
Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, P.O. Box, CH–4002 Basel, Switzerland University of Basel, P.O. Box, CH–4003 Basel, Switzerland
OLIVIER BRAISSANT
Affiliation:
Laboratory of Biomechanics and Biocalorimetry, Biozentrum/Pharmazentrum, University of Basel, Switzerland
JENNIFER KEISER*
Affiliation:
Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, P.O. Box, CH–4002 Basel, Switzerland University of Basel, P.O. Box, CH–4003 Basel, Switzerland
*
*Corresponding author: Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, P.O. Box, CH–4002 Basel, Switzerland. Tel.: +41 61 284 8218; Fax: +41 61 284 8105. E-mail: jennifer.keiser@unibas.ch

Summary

The motility assay is the current gold standard for evaluating drug effects on hookworm larvae and adults, however, among other drawbacks the assay is time consuming, and prone to individual subjectivity. We evaluated six alternative in vitro assays, namely the feeding inhibition assay, the colourimetric AlamarBlue®, MTT formazan and acid phosphatase activity assays, as well as isothermal calorimetry and the xCELLigence System using Ancylostoma ceylanicum third-stage larvae, stimulated third-stage larvae and adults. The performances of the assays were compared to the motility assay using three standard drugs: albendazole, levamisole and ivermectin (100–1 μg/ml). None of the assays investigated offered an advantage over the motility assay, because they were all inapplicable to third-stage larvae, which were presumably metabolically and physically too inactive. Among all assays tested the xCELLigence System performed best on adult worms as the test was accurate, simple, required a minimal number of worms and offered the possibility for conducting a medium-throughput screening.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Berridge, M. V. and Tan, A. S. (1993). Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Archives of Biochemistry and Biophysics 303, 474482.Google Scholar
Bethony, J., Brooker, S., Albonico, M., Geiger, S. M., Loukas, A., Diemert, D. and Hotez, P. J. (2006). Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet 367, 15211532.CrossRefGoogle ScholarPubMed
Braissant, O., Wirz, D., Gopfert, B. and Daniels, A. U. (2010). Use of isothermal microcalorimetry to monitor microbial activities. FEMS Microbiology Letters 303, 18.Google Scholar
Brooker, S., Bethony, J. and Hotez, P. J. (2004). Human hookworm infection in the 21st century. Advances in Parasitology 58, 197288.CrossRefGoogle Scholar
Burnell, A. M., Houthoofd, K., O'hanlon, K. and Vanfleteren, J. R. (2005). Alternate metabolism during the dauer stage of the nematode Caenorhabditis elegans. Experimental Gerontology 40, 850856.CrossRefGoogle ScholarPubMed
Cassada, R. C. and Russell, R. L. (1975). The dauer larva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Developmental Biology 46, 326342.Google Scholar
Chan, M. S. (1997). The global burden of intestinal nematode infections – fifty years on. Parasitology Today 13, 438443.CrossRefGoogle Scholar
Demeler, J., Kuttler, U. and Von Samson-Himmelstjerna, G. (2010). Adaptation and evaluation of three different in vitro tests for the detection of resistance to anthelmintics in gastro intestinal nematodes of cattle. Veterinary Parasitology 170, 6170.Google Scholar
Geerts, S. and Gryseels, B. (2001). Anthelmintic resistance in human helminths: a review. Tropical Medicine and International Health 6, 915921.CrossRefGoogle ScholarPubMed
Gill, J. H., Redwin, J. M., Van Wyk, J. A. and Lacey, E. (1991). Detection of resistance to ivermectin in Haemonchus contortus. International Journal for Parasitology 21, 771776.Google Scholar
Harhay, M. O., Horton, J. and Olliaro, P. L. (2010). Epidemiology and control of human gastrointestinal parasites in children. Expert Review of Anti-Infective Therapy 8, 219234.CrossRefGoogle ScholarPubMed
Hawdon, J. M. and Schad, G. A. (1990). Serum-stimulated feeding in vitro by third-stage infective larvae of the canine hookworm Ancylostoma caninum. Journal of Parasitology 76, 394398.CrossRefGoogle ScholarPubMed
Hawdon, J. M. and Schad, G. A. (1992). Ancylostoma caninum: reduced glutathione stimulates feeding by third-stage infective larvae. Experimental Parasitology 75, 4046.Google Scholar
Hotez, P. (2008). Hookworm and poverty. Annals of the New York Acadademy of Science 1136, 3844.CrossRefGoogle ScholarPubMed
Hotez, P. J., Brindley, P. J., Bethony, J. M., King, C. H., Pearce, E. J. and Jacobson, J. (2008). Helminth infections: the great neglected tropical diseases. Journal of Clinical Investigation 118, 13111321.CrossRefGoogle ScholarPubMed
Hotez, P. J. and Pecoul, B. (2010). “Manifesto” for advancing the control and elimination of neglected tropical diseases. PLoS Neglected Tropical Diseases 4, e718.CrossRefGoogle ScholarPubMed
James, C. E. and Davey, M. W. (2007). A rapid colorimetric assay for the quantitation of the viability of free-living larvae of nematodes in vitro. Parasitology Research 101, 975980.CrossRefGoogle ScholarPubMed
Kaplan, R. M. (2004). Drug resistance in nematodes of veterinary importance: a status report. Trends in Parasitology 20, 477481.CrossRefGoogle ScholarPubMed
Keiser, J. and Utzinger, J. (2010). The drugs we have and the drugs we need against major helminth infections. Advances in Parasitology 73, 197230.CrossRefGoogle ScholarPubMed
Kirchhofer, C., Vargas, M., Braissant, O., Dong, Y., Wang, X., Vennerstrom, J. L. and Keiser, J. (2011). Activity of OZ78 analogues against Fasciola hepatica and Echinostoma caproni. Acta Tropica 118, 5662.CrossRefGoogle ScholarPubMed
Kopp, S. R., Coleman, G. T., Mccarthy, J. S. and Kotze, A. C. (2008). Application of in vitro anthelmintic sensitivity assays to canine parasitology: detecting resistance to pyrantel in Ancylostoma caninum. Veterinary Parasitology 152, 284293.CrossRefGoogle ScholarPubMed
Kotze, A. C., Clifford, S., O'grady, J., Behnke, J. M. and Mccarthy, J. S. (2004). An in vitro larval motility assay to determine anthelmintic sensitivity for human hookworm and Strongyloides species. American Journal of Tropical Medicine and Hygiene 71, 608616.Google Scholar
Le Jambre, L. (1976). Egg hatch as an in vitro assay of thiabendazole resistance in nematodes. Veterinary Parasitology 2, 385391.CrossRefGoogle Scholar
Maki, J. and Yanagisawa, T. (1980). Acid phosphatase activity demonstrated in the nematodes, Dirofilaria immitis and Angiostrongylus cantonensis with special reference to the characters and distribution. Parasitology 80, 2338.CrossRefGoogle Scholar
Manneck, T., Braissant, O., Haggenmuller, Y. and Keiser, J. (2011). Isothermal microcalorimetry to study drugs against Schistosoma mansoni. Journal of Clinical Microbiology 49, 12171225.CrossRefGoogle ScholarPubMed
Martin, R. J. (1997). Modes of action of anthelmintic drugs. Veterinary Journal 154 1134.Google Scholar
Martinez-Grueiro, M. M. (2002). Acid phosphatase activity in excretion/secretion products from Heligmosomoides polygyrus adults: an indicator of the physiological status of the worms. Parasitology Research 88, 946949.Google Scholar
Misra, A., Visen, P. K. and Katiyar, J. C. (1981). Comparative efficacy of standard antihookworm drugs against various test nematodes. Journal of Helminthology 55, 273278.CrossRefGoogle ScholarPubMed
Moser, J. M., Freitas, T., Arasu, P. and Gibson, G. (2005). Gene expression profiles associated with the transition to parasitism in Ancylostoma caninum larvae. Molecular and Biochemical Parasitology 143, 3948.CrossRefGoogle ScholarPubMed
Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods 65, 5563.CrossRefGoogle ScholarPubMed
O'riordan, V. B., Burnell, A. M. (1989). Intermediary metabolism in the dauer darva of the nematode Caenorhabitis elegans-1. Glycolysis, glucogenesis, oxidative phosphorylation and the tricarboxylic acid cycle. Comparative Biochemistry and Physiology 92B, 233238.Google Scholar
O'riordan, V. B., Burnell, A. M. (1990). Intermediary metabolsim in the dauer larva of the nematode Caenorhabditis elegans-II. The glyoxylate cycle and fatty-acid oxidation. Comparative Biochemistry and Physiology 95B, 125130.Google Scholar
Räz, B., Iten, M., Grether-Buhler, Y., Kaminsky, R. and Brun, R. (1997). The Alamar Blue assay to determine drug sensitivity of African trypanosomes (T.b. rhodesiense and T.b. gambiense) in vitro. Acta Tropica 68, 139147.CrossRefGoogle ScholarPubMed
Richards, J. C., Behnke, J. M. and Duce, I. R. (1995). In vitro studies on the relative sensitivity to ivermectin of Necator americanus and Ancylostoma ceylanicum. International Journal for Parasitology 25, 11851191.Google Scholar
Satou, T., Koga, M., Koike, K., Tada, I. and Nikaido, T. (2001). Nematocidal activities of thiabendazole and ivermectin against the larvae of Strongyloides ratti and S. venezuelensis. Veterinary Parasitology 99, 311322.Google Scholar
Silbereisen, A., Tritten, L. and Keiser, J. (2011). Exploration of novel in vitro assays to study drugs against Trichuris spp. Journal of Microbiological Methods 87, 169175.CrossRefGoogle ScholarPubMed
Smith, R. A., Pontiggia, L., Waterman, C., Lichtenwalner, M. and Wasserman, J. (2009). Comparison of motility, recovery, and methyl-thiazolyl-tetrazolium reduction assays for use in screening plant products for anthelmintic activity. Parasitology Research 105, 13391343.CrossRefGoogle ScholarPubMed
Smout, M. J., Kotze, A. C., Mccarthy, J. S. and Loukas, A. (2010). A novel high throughput assay for anthelmintic drug screening and resistance diagnosis by real-time monitoring of parasite motility. PLoS Neglected Tropical Diseases 4, e885.CrossRefGoogle ScholarPubMed
Taylor, M. A., Hunt, K. R. and Goodyear, K. L. (2002). Anthelmintic resistance detection methods. Veterinary Parasitology 103, 183194.CrossRefGoogle ScholarPubMed
World Health Organization (2011). WHO Model List of Essential Medicines. World Health Organization, Geneva, Switzerland.Google Scholar
Wolstenholme, A. J., Fairweather, I., Prichard, R., Von Samson-Himmelstjerna, G. and Sangster, N. C. (2004). Drug resistance in veterinary helminths. Trends in Parasitology 20, 469476.Google Scholar
Xing, J. Z., Zhu, L., Jackson, J. A., Gabos, S., Sun, X. J., Wang, X. B. and Xu, X. (2005). Dynamic monitoring of cytotoxicity on microelectronic sensors. Chemical Research in Toxicology 18, 154161.CrossRefGoogle ScholarPubMed