Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T19:27:27.575Z Has data issue: false hasContentIssue false

Development and validation of flow cytometric measurement for parasitaemia using autofluorescence and YOYO-1 in rodent malaria

Published online by Cambridge University Press:  20 April 2007

L. XIE
Affiliation:
Department of Pharmacology, Division of Experimental Therapeutics, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
Q. LI*
Affiliation:
Department of Pharmacology, Division of Experimental Therapeutics, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
J. JOHNSON
Affiliation:
Department of Pharmacology, Division of Experimental Therapeutics, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
J. ZHANG
Affiliation:
Department of Pharmacology, Division of Experimental Therapeutics, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
W. MILHOUS
Affiliation:
Department of Pharmacology, Division of Experimental Therapeutics, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
D. KYLE
Affiliation:
Department of Pharmacology, Division of Experimental Therapeutics, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
*
*Corresponding author. Tel: 001 301 319 9351. Fax: 001 301 319 7360. E-mail: qigui.li@na.amedd.army.mil

Summary

An automated flow cytometric (FCM) detection method has been developed and validated with a simple diagnostic procedure in parasitized erythrocytes of Plasmodium berghei-infected rats using the nucleic acid-binding fluorescent dye YOYO-1. High levels of reticulocytes were detected during the course of the infection, ranging from 1·2–51·2%, but any RNA potentially confounding the assay could be removed by digestion with RNAse. The cell counts of uninfected, infected, and nucleated cells occurred with high precision. The cells were divided into different populations according to their physical or chemical properties but various factors within the assay such as cell fixation, RNA digestion, and compensation required optimization. In this study, FCM greatly simplified and accelerated parasite detection, with a mean precision of 4·4%, specificity of 98·9% and accuracy of 101·3%. The detection and quantitation limits in the assay were 0·024% and 0·074% parasitaemia, respectively. Overall, the parasite counts by FCM measurement correlated highly (r2=0·954–0·988) with the parasitaemia measured by light microscopical analysis when animals treated with suppressive, clearance, and curative doses of novel antimalarial drugs were examined. The lower levels of parasitaemia (30%) detected by microscopy compared to FCM may be related to a number of schizonts externally attached to the erythrocyte membranes that normally would not be included in microscopy counting. Lower sampling error and reliable identification of rodent erythrocyte parasites based on the principles of FCM have replaced the traditional blood smear in our laboratory.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barkan, D., Ginsburg, H. and Golenser, J. (2000). Optimisation of flow cytometric measurement of parasitaemia in plasmodium-infected mice. International Journal for Parasitology 30, 649653. doi: 10.1016/S0020-7519(00)00035-7.CrossRefGoogle ScholarPubMed
Beadle, C., Long, G. W., Weiss, W. R., McElroy, P. D., Maret, S. M., Oloo, A. J. and Hoffman, S. L. (1994). Diagnosis of malaria by detection of Plasmodium falciparum HRP-2 antigen with a rapid dipstick antigen-capture assay. Lancet 343(8897), 564568. AN 9404193128.CrossRefGoogle ScholarPubMed
Brown, G. V., Battye, F. L. and Howard, R. J. (1980). Separation of stages of P. falciparum-infected cells by means of fluorescence activated cell sorter. The American Journal of Tropical Medicine and Hygiene 29, 11471149.CrossRefGoogle Scholar
Contreras, C. E., Rivas, M. A., Dominguez, J., Charris, J., Palacios, M., Bianco, N. E. and Blanca, I. (2004). Stage-specific activity of potential antimalarial compounds measured in vitro by flow cytometry in comparison to optical microscopy and hypoxanthine uptake. Memórias do Instituto Oswaldo Cruz 99, 179184.CrossRefGoogle ScholarPubMed
Fix, A. S., Waterhouse, C., Greiner, E. C. and Stoskopf, M. K. (1988). Plasmodium relictum as a cause of avian malaria in wild-caught magellanic penguins (Spheniscus magellanicus). Journal of Wildlife Diseases 24, 610619.CrossRefGoogle ScholarPubMed
Franklin, R. M., Brun, R. and Grieder, A. (1986). Microscopic and flow cytophotometric analysis of parasitaemia in cultures of Plasmodium falciparum vitally stained with Hoechst 33342 – application to studies of antimalarial agents. Zeitschrift für Parasitenkunde 72, 201212.CrossRefGoogle ScholarPubMed
Guidance for Industry (2001). Bioanalytical Method Validation. US Department of Health and Human Service, Food and Drug Administration, May 2001. www.fda.gov/cder/guidance/4252fnl.pdfGoogle Scholar
Guidance for Industry (1996). Q2B Validation of Analytical Procedures: Methodology, US Department of Health and Human Service. Food and Drug Administration, ICH, November 1996. www.fda.gov/cder/guidance/1320fnl.pdfGoogle Scholar
Haugland, R. P. (1996). Handbook of Fluorescent Probes and Research Chemicals. Molecular Probes, Engene, OR, USA.Google Scholar
Hirons, G. T., Fawcett, J. J. and Crissman, H. A. (1994). TOTO and YOYO: new very bright fluorochromes for DNA content analysis by flow cytometry. Cytometry 15, 129140.CrossRefGoogle ScholarPubMed
Indaratna, K. and Kidson, C. (1995). Overview: Changing economic challenges in malaria control. The Southeast Asian Journal of Tropical Medicine and Public Health 26, 388396.Google Scholar
Jacobberger, J. W., Horan, P. K. and Hare, J. D. (1984). Flow cytometric analysis of blood cells stained with the cyanine dye DiOC1[3]: reticulocyte quantification. Cytometry 5, 589600.CrossRefGoogle ScholarPubMed
Jacobberger, J. W., Horan, P. K. and Hare, J. D. (1992). Cell cycle analysis of asexual stages of erythrocytic malaria parasites. Cell Proliferation 25, 431445.CrossRefGoogle ScholarPubMed
Jaffe, E. S. (1999). Hematopathology: integration of morphologic features and biologic markers for diagnosis. Modern Pathology 12, 109115.Google ScholarPubMed
Janse, C. J. and van Vianen, P. H. (1994). Flow cytometry in malaria detection. Methods in Cell Biology 42, 295318.CrossRefGoogle ScholarPubMed
Jimenez-Diaz, M. B., Rullas, J., Mulet, T., Fernandez, L., Bravo, C., Gargallo-Viola, D. and Angulo-Barturen, I. (2005). Improvement of detection specificity of Plasmodium-infected murine erythrocytes by flow cytometry using autofluorescence and YOYO-1. Cytometry 67A, 2736.CrossRefGoogle Scholar
Kadjoian, V., Gasquet, M., Delmas, F., Guiraud, H., De Meo, M., Laget, M. and Timon-David, P. (1992). Flow cytometry to evaluate the parasitaemia of Plasmodium falciparum. Journal de Pharmacie de Belgique 47, 499503.Google ScholarPubMed
Kaewsonthi, S. (1989). Internal and external costs of malaria surveillance in Thailand. Social and Economic Research Report No. 6, TDR/WHO, Geneva.Google Scholar
Lemieux, S., Avrameas, S. and Bussard, A. E. (1974). Local hemolysis plaque assay using a new method of coupling antigens on sheep erythrocytes by glutaraldehyde. Immunochemistry 11, 261269.CrossRefGoogle ScholarPubMed
Li, Q. G., Si, Y. Z., Lee, P., Wong, E., Xie, L. H., Kyle, D. E. and Dow, G. S. (2003). Efficacy comparison of intravenous artelinate and artesunate in Plasmodium berghei-infected Sprague-Dawley rats. Parasitology 126, 283291.CrossRefGoogle ScholarPubMed
Makler, M. T., Lee, L. G. and Recktenwald, D. (1987). Thiazole orange: a new dye for Plasmodium species analysis. Cytometry 8, 568570.CrossRefGoogle ScholarPubMed
Makler, M. T., Palmer, C. J. and Ager, A. L. (1998). A review of practical techniques for the diagnosis of malaria. Annals of Tropical Medicine and Parasitology 92, 419433. doi: 10.1080/00034989859401.Google ScholarPubMed
Miles, A. (1991). The economics of malaria control. In Malaria: Waiting for the Vaccine (ed. Target, O.), pp. 141168. Wiley, London.Google Scholar
Milne, L. M., Kyi, M. S., Chiodini, P. L. and Warhurst, D. C. (1994). Accuracy of routine laboratory diagnosis of malaria in the United Kingdom. Journal of Clinical Pathology 47, 740742.CrossRefGoogle ScholarPubMed
Mojzis, J., Nicak, A., Linkova, A., Jandosekova, M. and Mirossay, L. (1999). Differences between cation-osmotic hemolysis and filterability in exaprolol- and glutaraldehyde-treated human red blood cells. Physiological Research 48, 411416.Google ScholarPubMed
Moody, A. (2002). Rapid diagnostic tests for malaria parasites. Clinical Microbiology Reviews 15, 6678.CrossRefGoogle ScholarPubMed
Owens, M. and Loken, M. (1995). Flow Cytometry Principles for Clinical Laboratory Practice. Quality Assurance for Quantitative Immunophenotyping. Wiley-Liss, New York.Google Scholar
Rye, H. S., Yue, S., Wemmer, D. E., Quesada, M. A., Haugland, R. P., Mathies, R. A. and Glazer, A. N. (1992). Stable fluorescent complexes of double-stranded DNA with bis-intercalating asymmetric cyanine dyes: properties and applications. Nucleic Acids Research 20, 28032812.CrossRefGoogle ScholarPubMed
Steen, H. B. (1991). Noise, sensitivity, and resolution of flow cytometers. Cytometry 30, 822830.Google Scholar
Sanchez, B. A., Mota, M. M., Sultan, A. A. and Carvalho, L. H. (2004). Plasmodium berghei parasite transformed with green fluorescent protein for screening blood schizontocidal agents. International Journal for Parasitology 34, 485490.CrossRefGoogle ScholarPubMed
Vigario, A. M., Belnoue, E., Cumano, A., Marussig, M., Miltgen, F., Landau, I., Mazier, D., Gresser, I. and Renia, L. (2001). Inhibition of Plasmodium yoelii blood-stage malaria by interferon alpha through the inhibition of the production of its target cell, the reticulocyte. Blood 97, 39663971.CrossRefGoogle ScholarPubMed
Whaun, J. M., Rittershaus, C. and Ip, S. H. (1983). Rapid identification and detection of parasitized human red cells by automated flow cytometry. Cytometry 4, 117122.CrossRefGoogle ScholarPubMed
Wongchotigul, V., Suwanna, N., Krudsood, S., Chindanond, D., Kano, S., Hanaoka, N., Akai, Y., Maekawa, Y., Nakayama, S., Kojima, S. and Looareesuwan, S. (2004). The use of flow cytometry as a diagnostic test for malaria parasites. The Southeast Asian Journal of Tropical Medicine and Public Health 35, 552559.Google ScholarPubMed
Wyatt, C. R., Goff, W. and Davis, W. C. (1991). A flow cytometric method for assessing viability of intraerythrocytic hemoparasites. Journal of Immunological Methods 140, 2330. doi: 10.1016/0022-1759(91)90122-V.CrossRefGoogle ScholarPubMed
Xie, L. H., Johnson, T. O., Weina, P. J., Si, Y. Z., Haeberte, A., Upadhyay, R., Wong, E. and Li, Q. G. (2005). Risk assessment and therapeutic indices of Artesunate and Artelinate in Plasmodium berghei-infected rats. International Journal of Toxicology 24, 251264. doi: 10.1080/10915810591007229.CrossRefGoogle Scholar