Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T06:05:21.716Z Has data issue: false hasContentIssue false

Dissection of the hierarchy and synergism of the bile derived signal on Cryptosporidium parvum excystation and infectivity

Published online by Cambridge University Press:  16 August 2012

B. J. KING*
Affiliation:
Australian Water Quality Centre, SA Water Corporation, Adelaide, South Australia, Australia, 5000
A. R. KEEGAN
Affiliation:
Australian Water Quality Centre, SA Water Corporation, Adelaide, South Australia, Australia, 5000
R. PHILLIPS
Affiliation:
Australian Water Quality Centre, SA Water Corporation, Adelaide, South Australia, Australia, 5000
S. FANOK
Affiliation:
Australian Water Quality Centre, SA Water Corporation, Adelaide, South Australia, Australia, 5000
P. T. MONIS
Affiliation:
Australian Water Quality Centre, SA Water Corporation, Adelaide, South Australia, Australia, 5000
*
*Corresponding author: Tel:61 8 742 42114. Fax: 61 8 700 32114. E-mail: brendon.king@sawater.com.au

Summary

Bile salts have been identified as an important trigger for excystation of Cryptosporidium oocysts but the hierarchy or synergism of this signal in relation to other triggers involved in excystation is poorly understood. In addition to excystation, bile salts have also been reported to increase the invasiveness of sporozoites within in vitro culture, possibly by affecting the secretory pathway via modification of intracellular calcium signalling. Nevertheless, incorporation of bile or bile salts into in vitro assays is not universal, with recent reports of negative effects on parasite growth. Here we report that bile and sodium taurocholate significantly affect both excystation rate and parasite in vitro growth. We demonstrate that their effect on excystation is dose, time and pre-treatment temperature dependent, while increases in parasite replication appear to be associated with modulation of parasite intracellular calcium and increased host cell susceptibility to infection. Notably, we illustrate that bile has a significant effect on host cells and can be cytotoxic at concentrations not much higher than those currently used for in vitro assays. This work should assist with more rational design of in vitro culture systems, with significant considerations for assay format when incorporating bile or bile salts as an excystation trigger.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ajjampur, S. S., Gladstone, B. P., Selvapandian, D., Muliyil, J. P., Ward, H. and Kang, G. (2007). Molecular and spatial epidemiology of cryptosporidiosis in children in a semiurban community in South India. Journal of Clinical Microbiology 45, 915920.CrossRefGoogle Scholar
Alum, A., Rubino, J. R. and Khalid Ijaz, M. (2011). Comparison of molecular markers for determining the viability and infectivity of Cryptosporidium oocysts and validation of molecular methods against animal infectivity assay. International Journal of Infectious Diseases 15, e197200.CrossRefGoogle ScholarPubMed
Barnes, D. A., Bonnin, A., Huang, J. X., Gousset, L., Wu, J., Gut, J., Doyle, P., Dubremetz, J. F., Ward, H. and Petersen, C. (1998). A novel multi-domain mucin-like glycoprotein of Cryptosporidium parvum mediates invasion. Molecular and Biochemical Parasitology 96, 93110.CrossRefGoogle ScholarPubMed
Cevallos, A. M., Zhang, X., Waldor, M. K., Jaison, S., Zhou, X., Tzipori, S., Neutra, M. R. and Ward, H. D. (2000). Molecular cloning and expression of a gene encoding Cryptosporidium parvum glycoproteins gp40 and gp15. Infection and Immunity 68, 41084116.CrossRefGoogle ScholarPubMed
Chalmers, R. M., Smith, R., Elwin, K., Clifton-Hadley, F. A. and Giles, M. (2011). Epidemiology of anthroponotic and zoonotic human cryptosporidiosis in England and Wales, 2004–2006. Epidemiology & Infection 139, 700712.CrossRefGoogle ScholarPubMed
Chen, X. M., O'Hara, S. P., Huang, B. Q., Nelson, J. B., Lin, J. J., Zhu, G., Ward, H. D. and Larusso, N. F. (2004). Apical organelle discharge by Cryptosporidium parvum is temperature, cytoskeleton, and intracellular calcium dependent and required for host cell invasion. Infection and Immunity 72, 68066816.CrossRefGoogle ScholarPubMed
Czekanska, E. M. (2011). Assessment of cell proliferation with resazurin-based fluorescent dye. Methods in Molecular Biology 740, 2732.CrossRefGoogle ScholarPubMed
Feng, H. P., Nie, W. J., Sheoran, A., Zhang, Q. S. and Tzipori, S. (2006). Bile acids enhance invasiveness of Cryptosporidium spp. into cultured cells. Infection and Immunity 74, 33423346.CrossRefGoogle ScholarPubMed
Forney, J. R., Yang, S., Du, C. and Healey, M. C. (1996 a). Efficacy of serine protease inhibitors against Cryptosporidium parvum infection in a bovine fallopian tube epithelial cell culture system. The Journal of Parasitology 82, 638640.CrossRefGoogle Scholar
Forney, J. R., Yang, S. and Healey, M. C. (1996 b). Protease activity associated with excystation of Cryptosporidium parvum oocysts. The Journal of Parasitology 82, 889892.CrossRefGoogle ScholarPubMed
Gatei, W., Wamae, C. N., Mbae, C., Waruru, A., Mulinge, E., Waithera, T., Gatika, S. M., Kamwati, S. K., Revathi, G. and Hart, C. A. (2006). Cryptosporidiosis: prevalence, genotype analysis, and symptoms associated with infections in children in Kenya. The American Journal of Tropical Medicine and Hygiene 75, 7882.CrossRefGoogle ScholarPubMed
Gold, D., Stein, B. and Tzipori, S. (2001). The utilization of sodium taurocholate in excystation of Cryptosporidium parvum and infection of tissue culture. The Journal of Parasitology 87, 9971000.CrossRefGoogle ScholarPubMed
Hardcastle, J., Hardcastle, P. T., Chapman, J. and Taylor, C. J. (2001). Taurocholic acid-induced secretion in normal and cystic fibrosis mouse ileum. Journal of Pharmacy and Pharmacology 53, 711719.CrossRefGoogle ScholarPubMed
Kar, S., Daugschies, A., Cakmak, A., Yilmazer, N., Dittmar, K. and Bangoura, B. (2011). Cryptosporidium parvum oocyst viability and behaviour of the residual body during the excystation process. Parasitology Research 41, 12311242.Google Scholar
Karanis, P. and Aldeyarbi, H. M. (2011). Evolution of Cryptosporidium in vitro culture. International Journal for Parasitology 41, 12311242.CrossRefGoogle ScholarPubMed
Kato, S., Jenkins, M. B., Ghiorse, W. C. and Bowman, D. D. (2001). Chemical and physical factors affecting the excystation of Cryptosporidium parvum oocysts. The Journal of Parasitology 87, 575581.CrossRefGoogle ScholarPubMed
Keegan, A. R., Fanok, S., Monis, P. T. and Saint, C. P. (2003). Cell culture-Taqman PCR assay for evaluation of Cryptosporidium parvum disinfection. Applied and Environmental Microbiology 69, 25052511.CrossRefGoogle ScholarPubMed
King, B. J., Keegan, A. R., Monis, P. T. and Saint, C. P. (2005). Environmental temperature controls Cryptosporidium oocyst metabolic rate and associated retention of infectivity. Applied and Environmental Microbiology 71, 38483857.CrossRefGoogle ScholarPubMed
King, B. J., Hoefel, D., Lim, S. P., Robinson, B. S. and Monis, P. T. (2009). Flow cytometric assessment of distinct physiological stages within Cryptosporidium parvum sporozoites post-excystation. Parasitology 136, 953966.CrossRefGoogle ScholarPubMed
King, B. J., Hoefel, D., Wong, P. E. and Monis, P. T. (2010). Solar radiation induces non-nuclear perturbations and a false start to regulated exocytosis in Cryptosporidium parvum. PLoS One 5, e11773.CrossRefGoogle Scholar
King, B. J., Keegan, A. R., Robinson, B. S. and Monis, P. T. (2011). Cryptosporidium cell culture infectivity assay design. Parasitology 138, 671681.CrossRefGoogle ScholarPubMed
Lalancette, C., Di Giovanni, G. D. and Prevost, M. (2010). Improved risk analysis by dual direct detection of total and infectious Cryptosporidium oocysts on cell culture in combination with immunofluorescence assay. Applied and Environmental Microbiology 76, 566577.CrossRefGoogle ScholarPubMed
Nguyen, A. and Bouscarel, B. (2008). Bile acids and signal transduction: role in glucose homeostasis. Cellular Signalling 20, 21802197.CrossRefGoogle ScholarPubMed
O'Donoghue, P. J. (1995). Cryptosporidium and cryptosporidiosis in man and animals. International Journal for Parasitology 25, 139195.CrossRefGoogle ScholarPubMed
Okhuysen, P. C., Chappell, C. L., Kettner, C. and Sterling, C. R. (1996). Cryptosporidium parvum metalloaminopeptidase inhibitors prevent in vitro excystation. Antimicrobial Agents and Chemotherapy 40, 27812784.CrossRefGoogle ScholarPubMed
Parks, D. J., Blanchard, S. G., Bledsoe, R. K., Chandra, G., Consler, T. G., Kliewer, S. A., Stimmel, J. B., Willson, T. M., Zavacki, A. M., Moore, D. D. and Lehmann, J. M. (1999). Bile acids: natural ligands for an orphan nuclear receptor. Science 284, 13651368.CrossRefGoogle ScholarPubMed
Ren, X., Zhao, J., Zhang, L., Ning, C., Jian, F., Wang, R., Lv, C., Wang, Q., Arrowood, M. J. and Xiao, L. (2012). Cryptosporidium tyzzeri n. sp. (Apicomplexa: Cryptosporidiidae) in domestic mice (Mus musculus). Experimental Parasitology 130, 274281.CrossRefGoogle Scholar
Robertson, L. J., Campbell, A. T. and Smith, H. V. (1993). In vitro excystation of Cryptosporidium parvum. Parasitology 106, 1319.CrossRefGoogle ScholarPubMed
Rochelle, P. A., Ferguson, D. M., Johnson, A. M. and De Leon, R. (2001). Quantitation of Cryptosporidium parvum infection in cell culture using a colorimetric in situ hybridization assay. Journal of Eukaryotic Microbiology 48, 565574.CrossRefGoogle ScholarPubMed
Singh, S., Alam, M. M., Pal-Bhowmick, I., Brzostowski, J. A. and Chitnis, C. E. (2010). Distinct external signals trigger sequential release of apical organelles during erythrocyte invasion by malaria parasites. PLoS Pathog 6, e1000746.CrossRefGoogle ScholarPubMed
Smith, H. V., Nichols, R. A. and Grimason, A. M. (2005). Cryptosporidium excystation and invasion: getting to the guts of the matter. Trends in Parasitology 21, 133142.CrossRefGoogle Scholar
Vesey, G., Griffiths, K. R., Gauci, M. R., Deere, D., Williams, K. L. and Veal, D. A. (1997). Simple and rapid measurement of Cryptosporidium excystation using flow cytometry. International Journal for Parasitology 27, 13531359.CrossRefGoogle ScholarPubMed
Wielinga, P. R., De Vries, A., Van Der Goot, T. H., Mank, T., Mars, M. H., Kortbeek, L. M. and Van Der Giessen, J. W. (2008). Molecular epidemiology of Cryptosporidium in humans and cattle in The Netherlands. International Journal for Parasitology 38, 809817.CrossRefGoogle ScholarPubMed
Yamazaki, K., Gleich, G. J. and Kita, H. (2001). Bile acids induce eosinophil degranulation by two different mechanisms. Hepatology 33, 582590.CrossRefGoogle ScholarPubMed