Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T14:27:48.920Z Has data issue: false hasContentIssue false

The ecology and age structure of a highly pathogenic avian influenza virus outbreak in wild mute swans

Published online by Cambridge University Press:  20 February 2012

O. G. PYBUS*
Affiliation:
Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS
C. M. PERRINS
Affiliation:
Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS Edward Grey Institute of Field Ornithology, Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS
B. CHOUDHURY
Affiliation:
Virology Department, Animal Health and Veterinary Laboratories Agency, Weybridge, Addlestone, Surrey KT153NB
R. J. MANVELL
Affiliation:
Virology Department, Animal Health and Veterinary Laboratories Agency, Weybridge, Addlestone, Surrey KT153NB
A. NUNEZ
Affiliation:
Virology Department, Animal Health and Veterinary Laboratories Agency, Weybridge, Addlestone, Surrey KT153NB
B. SCHULENBURG
Affiliation:
Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS
B. C. SHELDON
Affiliation:
Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS Edward Grey Institute of Field Ornithology, Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS
I. H. BROWN
Affiliation:
Virology Department, Animal Health and Veterinary Laboratories Agency, Weybridge, Addlestone, Surrey KT153NB
*
*Corresponding author: oliver.pybus@zoo.ox.ac.uk(01865 271274).

Summary

The first UK epizootic of highly pathogenic (HP) H5N1 influenza in wild birds occurred in 2008, in a population of mute swans that had been the subject of ornithological study for decades. Here we use an innovative combination of ornithological, phylogenetic and immunological approaches to investigate the ecology and age structure of HP H5N1 in nature. We screened samples from swans and waterbirds using PCR and sequenced HP H5N1-positive samples. The outbreak's origin was investigated by linking bird count data with a molecular clock analysis of sampled virus sequences. We used ringing records to reconstruct the age-structure of outbreak mortality, and we estimated the age distribution of prior exposure to avian influenza. Outbreak mortality was low and all HP H5N1-positive mute swans in the affected population were <3 years old. Only the youngest age classes contained an appreciable number of individuals with no detectable antibody responses to viral nucleoprotein. Phylogenetic analysis indicated that the outbreak strain circulated locally for ∼1 month before detection and arrived when the immigration rate of migrant waterbirds was highest. Our data are consistent with the hypothesis that HP H5N1 epizootics in wild swans exhibit limited mortality due to immune protection arising from previous exposure. Our study population may represent a valuable resource for investigating the natural ecology and epidemiology of avian influenza.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Austin, G. E., Collier, M. P., Calbrade, N. A., Hall, C. and Musgrove, A. J. (2008). Waterbirds in the UK 2006/07: The Wetland Bird Survey. BTO/WWT/RSPB/JNCC, Thetford.Google Scholar
Baillie, G. J., Galiano, M., Agapow, P. M., Myers, R., Chiam, R., Gall, A., Palser, A. L., Watson, S. J., Hedge, J., Underwood, A., Platt, S., McLean, E., Pebody, R. G., Rambaut, A., Green, J., Daniels, R., Pybus, O. G., Kellam, P. and Zambon, M. (2012). Evolutionary dynamics of local pandemic H1N1/09 influenza lineages revealed by whole genome analysis. Journal of Virology 86, 1118.CrossRefGoogle ScholarPubMed
Bennett, P. M. and Owens, I. P. F. (2002). Evolutionary Ecology of Birds. Oxford University Press, UK.CrossRefGoogle Scholar
Berhane, Y., Leith, M., Embury-Hyatt, C., Neufeld, J., Babiuk, S., Hisanaga, T., Kehler, H., Hooper-McGrevy, K. and Pasick, J. (2010). Studying Possible Cross-Protection of Canada Geese Preexposed to North American Low Pathogenicity Avian Influenza Virus Strains (H3N8, H4N6, and H5N2) Against an H5N1 Highly Pathogenic Avian Influenza Challenge. Avian Diseases 54, 548554.CrossRefGoogle ScholarPubMed
Brown, J. D., Stallknecht, D. E. and Swayne, D. E. (2008). Experimental infection of swans and geese with highly pathogenic avian influenza virus (H5N1) of Asian lineage. Emerging Infectious Diseases 14, 136142.CrossRefGoogle ScholarPubMed
Chen, H., Smith, G. J., Zhang, S. Y., Qin, K., Wang, J., Li, K. S., Webster, R. G., Peiris, J. S. and Guan, Y. (2005). H5N1 virus outbreak in migratory waterfowl. Nature 436, 191192.CrossRefGoogle ScholarPubMed
Costa, T. P., Brown, J. D., Howerth, E. W., Stallknecht, D. E. and Swayne, D. E. (2011). Homo- and heterosubtypic low pathogenic avian influenza exposure on H5N1 highly pathogenic avian influenza virus infection in wood ducks (Aix sponsa). PLoS One 6, e15987.CrossRefGoogle ScholarPubMed
DEFRA (2008). Highly Pathogenic Avian Influenza – H5N1 in swans in Dorset (version 2, released 12th February 2008). Epidemiology Report1A. Page Street, London, SW1P 4PQ, United Kingdom.Google Scholar
Drummond, A. J. and Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214.CrossRefGoogle ScholarPubMed
ECDC Influenza Team (2006). Highly Pathogenic Avian Influenza A/H5N1 – Update and Overview of 2006. Eurosurveillance 11, 3098. Available online: http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=3098.Google Scholar
EU (European Union) (2006). Manual for Avian Influenza as Provided for in Council Directive 2005/94/EC. Official Journal of the European Union L237/1–18.Google Scholar
Feare, C. J. (2007). The role of wild birds in the spread of HPAI H5N1. Avian Diseases 51, 440447.CrossRefGoogle ScholarPubMed
Fereidouni, S. R., Starick, E., Beer, M., Wilking, H., Kalthoff, D., Grund, C., Häuslaigner, R., Breithaupt, A., Lange, E. and Harder, T. C. (2009). Highly pathogenic avian influenza virus infection of mallards with homo- and heterosubtypic immunity induced by low pathogenic avian influenza viruses. PLoS One 4, e6706.CrossRefGoogle ScholarPubMed
Gauthier-Clerc, M., Lebarbenchon, C. and Thomas, F. (2007). Recent expansion of highly pathenogenic avian influenza H5N1: a critical review. Ibis 149, 202214.CrossRefGoogle Scholar
Globig, A., Staubach, C., Beer, M., Köppen, U., Fiedler, W., Nieburg, M., Wilking, H., Starick, E., Teifke, J. P., Werner, O., Unger, F., Grund, C., Wolf, C., Roost, H., Feldhusen, F., Conraths, F. J., Mettenleiter, T. C. and Harder, T. C. (2009). Epidemiological and ornithological aspects of outbreaks of highly pathogenic avian influenza virus H5N1 of asian lineage in wild birds in Germany, 2006 and 2007. Transboundary & Emerging Diseases 56, 5772.CrossRefGoogle ScholarPubMed
Guan, Y., Peiris, J. S., Lipatov, A. S., Ellis, T. M., Dyrting, K. C., Krauss, S., Zhang, L. J., Webster, R. G. and Shortridge, K. F. (2002). Emergence of multiple genotypes of H5N1 avian influenza viruses in Hong Kong SAR. Proceedings of the National Academy of Sciences, USA 99, 89508955.CrossRefGoogle ScholarPubMed
Hars, J., Ruette, S., Benmergui, M., Fouque, C., Fournier, J. Y., Legouge, A., Cherbonnel, M., Daniel, B., Dupuy, C. and Jestin, V. (2008). The epidemiology of the highly pathogenic H5N1 avian influenza in mute swan (Cygnus olor) and other Anatidae in the Dombes region (France), 2006. Journal of Wildlife Diseases 44, 811823.CrossRefGoogle ScholarPubMed
Hesterberg, U., Harris, K., Stroud, D., Guberti, V., Busani, L., Pittman, M., Piazza, V., Cook, A. and Brown, I. (2009). Avian Influenza surveillance in wild birds in the European Union in 2006. Influenza and Other Respiratory Viruses 3, 114.CrossRefGoogle ScholarPubMed
Hoye, B. J., Fouchier, R. A. and Klaassen, M. (2012). Host behaviour and physiology underpin individual variation in avian influenza virus infection in migratory Bewick's swans. Proceedings of the Royal Society of London Series B 279, 529534.Google ScholarPubMed
Hoye, B. J., Munster, V. J., Nishiura, H., Klaassen, M. and Fouchier, R. A. (2010). Surveillance of wild birds for avian influenza virus. Emerging Infectious Diseases 16, 18271834.CrossRefGoogle ScholarPubMed
Hinshaw, V. S., Webster, R. G. and Turner, B. (1980). The perpetuation of orthomyxoviruses and paramyxoviruses in Canadian waterfowl. Canadian Journal of Microbiology 26, 622629.CrossRefGoogle ScholarPubMed
Kalthoff, D., Breithaupt, A., Teifke, J. P., Globig, A., Harder, T., Mettenleiter, T. C. and Beer, M. (2008). Highly pathogenic avian influenza virus (H5N1) in experimentally infected adult Mute swans. Emerging Infectious Diseases 14, 12671270.CrossRefGoogle ScholarPubMed
Jourdain, E., Gunnarsson, G., Wahlgren, J., Latorre-Margalef, N., Bröjer, C., Sahlin, S., Svensson, L., Waldenström, J., Lundkvist, A. and Olsen, B. (2010). Influenza Virus in a Natural Host, the Mallard: Experimental Infection Data. PLoS One 5, e8935.CrossRefGoogle Scholar
McCleery, R. H., Perrins, C. M., Sheldon, B. C. and Charmantier, A. (2008). Age-specific reproduction in a long-lived species: the combined effects of senescence and individual quality. Proceedings of the Royal Society of London Series B 275, 963970.Google Scholar
McCleery, R. H., Perrins, C. M., Wheeler, D. and Groves, S. (2002). Population structure, survival rates and productivity of Mute Swans breeding in a colony at Abbotsbury, Dorset, England. Waterbirds 25 (Special Publication 1), 192201.Google Scholar
Nagy, A., Machova, J., Hornickova, J., Tomci, M., Nagl, I., Horyna, B. and Holko, I. (2007). Highly pathogenic avian influenza virus subtype H5N1 in Mute swans in the Czech Republic. Veterinary Microbiology 120, 916.CrossRefGoogle ScholarPubMed
Niqueux, E., Guionie, O., Schmitz, A., Hars, J. and Jestin, V. (2010). Presence of serum antibodies to influenza A subtypes H5 and N1 in swans and ibises in French wetlands, irrespective of highly pathogenic H5N1 natural infection. Avian Diseases 54, 502508.CrossRefGoogle ScholarPubMed
Ogilvie, M. A. and Perrins, C. M. (1981). A study of the Abbotsbury Swans. Wildfowl 32, 3547.Google Scholar
OIE (World Organization for Animal Health) (2005). Highly pathogenic avian influenza in Romania. Follow-up report no. 12. Disease Information 18, No. 50. World Organization for Animal Health (OIE), Paris, France.Google Scholar
OIE (World Organization for Animal Health) (2008). Chapter 2.3.4: Avian influenza. In Manual of diagnostic tests and vaccines for terrestrial animals, pp. 465481. World Organization for Animal Health (OIE), Paris, France.Google Scholar
Owen, M. and Mitchell, C. (1988). Movements and migrations of Wigeon Anus penelope wintering in Britain and Ireland. Bird Study 35, 4759.CrossRefGoogle Scholar
Perrins, C. M. (1991). Survival rates of young Mute Swans Cygnus olor. Wildfowl S1, 95103.Google Scholar
Perrins, C. M., McCleery, R. H. and Ogilvie, M. A. (1994). A study of the breeding Mute Swans Cygnus olor at Abbotsbury. Wildfowl 45, 114.Google Scholar
Senne, D. A., Pederson, J. C., Suarez, D. I. and Panigrahy, B. (2006). Rapid diagnosis of avian influenza (AI) and assessment of pathogenicity of avian H5 and H7 subtypes by molecular methods. Developments in Biologicals 126, 171177.Google ScholarPubMed
Seo, S. H. and Webster, R. G. (2001). Cross-reactive, cell-mediated immunity and protection of chickens from lethal H5N1 influenza virus infection in Hong Kong poultry markets. Journal of Virology 75, 25162525.CrossRefGoogle ScholarPubMed
Sims, L. S. and Brown, I. H. (2008). Multi-continental epizootics of H5N1 highly pathogenic avian influenza 1996–2007. In Avian Influenza (ed. Swayne, D. E.), pp. 251286. Blackwells Publishing, Oxford, UK.CrossRefGoogle Scholar
Slomka, M. J., Irvine, R. M., Pavlidis, T., Banks, J. and Brown, I. H. (2010). The role of real-time RT-PCR platform technology in the diagnosis and management of notifiable avian influenza outbreaks: experiences in Great Britain. Avian Diseases 54(S1), 591596.CrossRefGoogle ScholarPubMed
Slomka, M. J., Pavlidis, T., Coward, V. J., Voermans, J., Koch, G., Hanna, A., Banks, J. and Brown, I. H. (2009). Validated RealTime reverse transcriptase PCR methods for the diagnosis and pathotyping of Eurasian H7 avian influenza viruses. Influenza and Other Respiratory Viruses 3, 151164.CrossRefGoogle ScholarPubMed
Smietanka, K., Minta, Z., Domańska-Blicharz, K., Tomczyk, G. and Wijaszka, T. (2008). Avian influenza H5N1 outbreak in a flock of mute swans in the city of Torun, Poland, in 2006. Bulletin of the Veterinary Institute in Pulawy 52, 491495.Google Scholar
van Gils, J. A., Munster, V. J., Radersma, R., Liefhebber, D., Fouchier, R. A. and Klaassen, M. (2007). Hampered Foraging and Migratory Performance in Swans Infected with Low-Pathogenic Avian Influenza A Virus. PLoS One 2, e184.CrossRefGoogle ScholarPubMed
Wallensten, A., Salter, M., Bennett, S., Brown, I., Hoschler, K. and Oliver, I. (2010). No evidence of transmission of H5N1 highly pathogenic avian influenza to humans after unprotected contact with infected wild swans. Epidemiology and Infection 138, 210213.CrossRefGoogle ScholarPubMed
Wang, J., Vijaykrishna, D., Duan, L., Bahl, J., Zhang, J. X., Webster, R. G., Peiris, J. S., Chen, H., Smith, G. J. and Guan, Y. (2008). Identification of the Progenitors of Indonesian and Vietnamese Avian Influenza A (H5N1) Viruses from Southern China. Journal of Virology 82, 34053414.CrossRefGoogle ScholarPubMed
Weber, T. P. and Stilianakis, N. I. (2007). Ecologic Immunology of Avian Influenza (H5N1) in Migratory Birds. Emerging Infectious Diseases 13, 11391143.CrossRefGoogle ScholarPubMed
Yasue, M., Feare, C. J., Bennun, L. and Fielder, W. (2006). The epidemiology of H5N1 avian influenza in wild birds: why we need better ecological data. Bioscience 56, 17.CrossRefGoogle Scholar