Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T00:22:09.026Z Has data issue: false hasContentIssue false

First detection of Babesia occultans in Hyalomma ticks from Tunisia

Published online by Cambridge University Press:  02 February 2011

A. ROS-GARCÍA
Affiliation:
Department of Animal Health, NEIKER – Instituto Vasco de Investigación y Desarrollo Agrario, Berreaga 1, 48160 Derio, Bizkaia, Spain
Y. M'GHIRBI
Affiliation:
Service d'Entomologie Médicale, Institut Pasteur de Tunis, 1002 Tunis, Tunisia
A. BOUATTOUR
Affiliation:
Service d'Entomologie Médicale, Institut Pasteur de Tunis, 1002 Tunis, Tunisia
A. HURTADO*
Affiliation:
Department of Animal Health, NEIKER – Instituto Vasco de Investigación y Desarrollo Agrario, Berreaga 1, 48160 Derio, Bizkaia, Spain
*
*Corresponding author: Department of Animal Health, NEIKER – Instituto Vasco de Investigación y Desarrollo Agrario, Berreaga 1, 48160 Derio, Bizkaia, Spain. Tel: +34 944034300. Fax: +34 944034310. E-mail: ahurtado@neiker.net

Summary

Descriptions of Babesia occultans have previously been restricted to sub-Saharan Africa. Here, we report the finding, for the first time, of this low or non-pathogenic bovine Babesia species in Tunisia, northern Africa. B. occultans DNA was detected by molecular methods in Hyalomma marginatum unfed ticks collected in 3 bioclimatic regions of Tunisia. The near-full-length 18S rRNA gene was sequenced and compared with related sequences retrieved from GenBank. Phylogenetic analysis indicated that other sequences deposited as Babesia sp. could also correspond to B. occultans, suggesting that this species may have a wide distribution in Mediterranean and Asiatic regions, and not only in sub-Saharan Africa as previously described. A B. occultans-specific Reverse Line Blot (RLB) oligonucleotide probe was designed for future epidemiological studies that would help to clarify this possibility.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allsopp, M. T. and Allsopp, B. A. (2006). Molecular sequence evidence for the reclassification of some Babesia species. Annals of the New York Academy of Sciences 1081, 509517.CrossRefGoogle ScholarPubMed
Bouattour, A. (2002). Dichotomous identification keys of ticks (Acari: Ixodidae), livestock parasites in North Africa. Archives de l'Institut Pasteur de Tunis 79, 4350.Google ScholarPubMed
Bouattour, A. and Darghouth, M. A. (1996). First report of Babesia divergens in Tunisia. Veterinary Parasitology 63, 161165.CrossRefGoogle ScholarPubMed
Dipeolu, O. O. and Amoo, A. (1984). The presence of kinetes of a Babesia species in the haemolymph smears of engorged Hyalomma ticks in Nigeria. Veterinary Parasitology 17, 4146.CrossRefGoogle ScholarPubMed
Estrada-Peña, A., Bouattour, A., Camicas, J.-L. and Walker, A. R. (2004). Ticks of Domestic Animals in the Mediterranean Region. A Guide to Identification of Species, 1st Edn. University of Zaragoza, Zaragoza, Spain.Google Scholar
Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution: International Journal of Organic Evolution 39, 783791. doi: 10.2307/2408678.CrossRefGoogle ScholarPubMed
Garcia-Sanmartin, J., Aurtenetxe, O., Barral, M., Marco, I., Lavin, S., Garcia-Perez, A. L. and Hurtado, A. (2007). Molecular detection and characterization of piroplasms infecting cervids and chamois in Northern Spain. Parasitology 134, 391398. doi: 10.1017/S0031182006001569.CrossRefGoogle ScholarPubMed
Garcia-Sanmartin, J., Barandika, J. F., Garcia-Perez, A. L. and Hurtado, A. (2008). Distribution and molecular detection of Theileria and Babesia in questing ticks from Northern Spain. Medical and Veterinary Entomology 22, 318325.CrossRefGoogle ScholarPubMed
Georges, K., Loria, G. R., Riili, S., Greco, A., Caracappa, S., Jongejan, F. and Sparagano, O. (2001). Detection of haemoparasites in cattle by reverse line blot hybridisation with a note on the distribution of ticks in Sicily. Veterinary Parasitology 99, 273286. doi: 10.1016/S0304-4017(01)00488-5.CrossRefGoogle ScholarPubMed
Gray, J. S. and de Vos, A. J. (1981). Studies on a bovine Babesia transmitted by Hyalomma marginatum rufipes Koch, 1844. The Onderstepoort Journal of Veterinary Research 48, 215223.Google ScholarPubMed
Gubbels, J. M., de Vos, A. P., van der Weide, M., Viseras, J., Schouls, L. M., de Vries, E. and Jongejan, F. (1999). Simultaneous detection of bovine Theileria and Babesia species by reverse line blot hybridization. Journal of Clinical Microbiology 37, 17821789.CrossRefGoogle ScholarPubMed
Ica, A., Vatansever, Z., Yildirim, A., Duzlu, O. and Inci, A. (2007). Detection of Theileria and Babesia species in ticks collected from cattle. Veterinary Parasitology 148, 156160.CrossRefGoogle ScholarPubMed
Jukes, T. H. and Cantor, C. R. (1969). Evolution of protein molecules. In Mammalian Protein Metabolism (ed. Munro, H. N.), pp. 21132. Academic Press, New York, USA.CrossRefGoogle Scholar
Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111120. doi: 10.1007/BF01731581.CrossRefGoogle ScholarPubMed
Luo, J., Yin, H., Liu, Z., Yang, D., Guan, G., Liu, A., Ma, M., Dang, S., Lu, B., Sun, C., Bai, Q., Lu, W. and Chen, P. (2005). Molecular phylogenetic studies on an unnamed bovine Babesia sp. based on small subunit ribosomal RNA gene sequences. Veterinary Parasitology 133, 16.CrossRefGoogle Scholar
M'ghirbi, Y., Hurtado, A., Barandika, J. F., Khlif, K., Ketata, Z. and Bouattour, A. (2008). A molecular survey of Theileria and Babesia parasites in cattle, with a note on the distribution of ticks in Tunisia. Parasitology Research 103, 435442.CrossRefGoogle ScholarPubMed
Nagore, D., Garcia-Sanmartin, J., Garcia-Perez, A. L., Juste, R. A. and Hurtado, A. (2004). Detection and identification of equine Theileria and Babesia species by reverse line blotting: epidemiological survey and phylogenetic analysis. Veterinary Parasitology 123, 4154. doi: 10.1016/j.vetpar.2004.04.010.CrossRefGoogle ScholarPubMed
Oosthuizen, M. C., Zweygarth, E., Collins, N. E., Troskie, M. and Penzhorn, B. L. (2008). Identification of a novel Babesia sp. from a sable antelope (Hippotragus niger Harris, 1838). Journal of Clinical Microbiology 46, 22472251.CrossRefGoogle ScholarPubMed
Preston, P. M. (2001). Theilerioses. In Encyclopedia of Arthropod-transmitted Infections of Man and Domesticated Animals (ed. Service, M. W.), pp. 487502. CABI Publishing, Wallingford, UK.Google Scholar
Saitou, N. and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406425.Google Scholar
Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 15961599.CrossRefGoogle ScholarPubMed
Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.CrossRefGoogle ScholarPubMed
Uilenberg, G. (2001). Babesiosis. In Encyclopedia of Arthropod-transmitted Infections of Man and Domesticated Animals (ed. Service, M. W.), pp. 5360. CABI Publishing, Wallingford, UK.Google Scholar
Uilenberg, G. (2006). Babesia-A historical overview. Veterinary Parasitology 138, 310.CrossRefGoogle ScholarPubMed