Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-14T00:22:52.516Z Has data issue: false hasContentIssue false

The gatekeeper residue and beyond: homologous calcium-dependent protein kinases as drug development targets for veterinarian Apicomplexa parasites

Published online by Cambridge University Press:  13 June 2014

KATELYN R. KEYLOUN
Affiliation:
Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, Seattle, WA, USA
MOLLY C. REID
Affiliation:
Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, Seattle, WA, USA
RYAN CHOI
Affiliation:
Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, Seattle, WA, USA
YIFAN SONG
Affiliation:
Department of Biochemistry, University of Washington, Seattle, Seattle, WA, USA
ANNA M. W. FOX
Affiliation:
Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, Seattle, WA, USA
HEIDI K. HILLESLAND
Affiliation:
Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, Seattle, WA, USA
ZHONGSHENG ZHANG
Affiliation:
Department of Biochemistry, University of Washington, Seattle, Seattle, WA, USA
RAMASUBBARAO VIDADALA
Affiliation:
Department of Chemistry, University of Washington, Seattle, Seattle, WA, USA
ETHAN A. MERRITT
Affiliation:
Department of Biochemistry, University of Washington, Seattle, Seattle, WA, USA
AUDREY O. T. LAU
Affiliation:
Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
DUSTIN J. MALY
Affiliation:
Department of Chemistry, University of Washington, Seattle, Seattle, WA, USA
ERKANG FAN
Affiliation:
Department of Biochemistry, University of Washington, Seattle, Seattle, WA, USA
LYNN K. BARRETT
Affiliation:
Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, Seattle, WA, USA
WESLEY C. VAN VOORHIS
Affiliation:
Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, Seattle, WA, USA
KAYODE K. OJO*
Affiliation:
Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, Seattle, WA, USA
*
* Corresponding author: Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, WA 98109, USA. E-mail: ojo67kk@u.washington.edu

Summary

Specific roles of individual CDPKs vary, but in general they mediate essential biological functions necessary for parasite survival. A comparative analysis of the structure-activity relationships (SAR) of Neospora caninum, Eimeria tenella and Babesia bovis calcium-dependent protein kinases (CDPKs) together with those of Plasmodium falciparum, Cryptosporidium parvum and Toxoplasma gondii was performed by screening against 333 bumped kinase inhibitors (BKIs). Structural modelling and experimental data revealed that residues other than the gatekeeper influence compound–protein interactions resulting in distinct sensitivity profiles. We subsequently defined potential amino-acid structural influences within the ATP-binding cavity for each orthologue necessary for consideration in the development of broad-spectrum apicomplexan CDPK inhibitors. Although the BKI library was developed for specific inhibition of glycine gatekeeper CDPKs combined with low inhibition of threonine gatekeeper human SRC kinase, some library compounds exhibit activity against serine- or threonine-containing CDPKs. Divergent BKI sensitivity of CDPK homologues could be explained on the basis of differences in the size and orientation of the hydrophobic pocket and specific variation at other amino-acid positions within the ATP-binding cavity. In particular, BbCDPK4 and PfCDPK1 are sensitive to a larger fraction of compounds than EtCDPK1 despite the presence of a threonine gatekeeper in all three CDPKs.

Type
Special Issue Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexandrov, A., Vignali, M., LaCount, D. J., Quartley, E., de Vries, C., De Rosa, D., Babulski, J., Mitchell, S. F., Schoenfeld, L. W., Fields, S., Hol, W. G., Dumont, M. E., Phizicky, E. M. and Grayhack, E. J. (2004). A facile method for high-throughput co-expression of protein pairs. Molecular and Cellular Proteomics 3, 934938. doi: 10.1074/mcp.T400008-MCP200.Google Scholar
Castellanos-Gonzalez, A., White, A. C., Ojo, K. K., Vidadala, R. S., Zhang, Z., Reid, M. C., Fox, A. M., Keyloun, K. R., Rivas, K., Irani, A., Dann, S. M., Fan, E., Maly, D. J. and Van Voorhis, W. C. (2013). A novel calcium-dependent protein kinase inhibitor as a lead compound for treating cryptosporidiosis. Journal of Infectious Diseases 208, 13421348. doi: 10.1093/infdis/jit327.Google Scholar
Doggett, J. S., Ojo, K. K., Fan, E., Maly, D. J. and Van Voorhis, W. C. (2014). Bumped kinase inhibitor 1294 treats established Toxoplasma gondii infection. Antimicrobial Agents and Chemotherapy 58, 35473549. AAC 01823–13.Google Scholar
Guinovart, C., Navia, M. M., Tanner, M. and Alonso, P. L. (2006). Malaria: burden of disease. Current Molecular Medicine 6, 137140.Google Scholar
Johnson, S. M., Murphy, R. C., Geiger, J. A., DeRocher, A. E., Zhang, Z., Ojo, K. K., Larson, E. T., Perera, B. G., Dale, E. J., He, P., Reid, M. C., Fox, A. M., Mueller, N. R., Merritt, E. A., Fan, E., Parsons, M., Van Voorhis, W. C. and Maly, D. J. (2012). Development of Toxoplasma gondii calcium-dependent protein kinase 1 (TgCDPK1) inhibitors with potent anti-toxoplasma activity. Journal of Medicinal Chemistry 55, 24162426. doi: 10.1021/jm201713h.Google Scholar
Katlama, C., De Wit, S., O'Doherty, E., Van Glabeke, M. and Clumeck, N. (1996). Pyrimethamine-clindamycin vs. pyrimethamine-sulfadiazine as acute and long-term therapy for toxoplasmic encephalitis in patients with AIDS. Clinical Infectious Diseases 22, 268275.Google Scholar
Larson, E. T., Ojo, K. K., Murphy, R. C., Johnson, S. M., Zhang, Z., Kim, J. E., Leibly, D. J., Fox, A. M., Reid, M. C., Dale, E. J., Perera, B. G., Kim, J., Hewitt, S. N., Hol, W. G., Verlinde, C. L., Fan, E., Van Voorhis, W. C., Maly, D. J. and Merritt, E. A. (2012). Multiple determinants for selective inhibition of apicomplexan calcium-dependent protein kinase CDPK1. Journal of Medicinal Chemistry 55, 28032810. doi: 10.1021/jm201725v.Google Scholar
Livingstone, C. D. and Barton, G. J. (1993). Protein sequence alignments: a strategy for the hierarchical analysis of residue conservation. Computer Applications in the Biosciences 9, 745756.Google Scholar
Lovett, J. L., Marchesini, N., Moreno, S. N. and Sibley, L. D. (2002). Toxoplasma gondii microneme secretion involves intracellular Ca(2+) release from inositol 1,4,5-triphosphate (IP(3))/ryanodine-sensitive stores. Journal of Biological Chemistry 277, 2587025876. doi: 10.1074/jbc.M202553200.Google Scholar
Luft, B. J., Hafner, R., Korzun, A. H., Leport, C., Antoniskis, D., Bosler, E. M., Bourland, D. D., Uttamchandani, R., Fuhrer, J. and Jacobson, J. (1993). Toxoplasmic encephalitis in patients with the acquired immunodeficiency syndrome. Members of the ACTG 077p/ANRS 009 Study Team. New England Journal of Medicine 329, 9951000. doi: 10.1056/NEJM199309303291403.Google Scholar
Mehlin, C., Boni, E., Buckner, F. S., Engel, L., Feist, T., Gelb, M. H., Haji, L., Kim, D., Liu, C., Mueller, N., Myler, P. J., Reddy, J. T., Sampson, J. N., Subramanian, E., Van Voorhis, W. C., Worthey, E., Zucker, F. and Hol, W. G. (2006). Heterologous expression of proteins from Plasmodium falciparum: results from 1000 genes. Molecular and Biochemical Parasitology 148, 144160. doi: 10.1016/j.molbiopara.2006.03.011.Google Scholar
Morrissette, N. S. and Sibley, L. D. (2002). Cytoskeleton of apicomplexan parasites. Microbiology and Molecular Biology Reviews 66, 2138.Google Scholar
Murphy, R. C., Ojo, K. K., Larson, E. T., Castellanos-Gonzalez, A., Perera, B. G., Keyloun, K. R., Kim, J. E., Bhandari, J. G., Muller, N. R., Verlinde, C. L., White, A. C., Merritt, E. A., Van Voorhis, W. C. and Maly, D. J. (2010). Discovery of potent and selective inhibitors of calcium-dependent protein kinase 1 (CDPK1) from C. parvum and T. gondii . ACS Medicinal Chemistry Letters 1, 331335. doi: 10.1021/ml100096t.Google Scholar
Nair, S. C., Brooks, C. F., Goodman, C. D., Strurm, A., McFadden, G. I., Sundriyal, S., Anglin, J. L., Song, Y., Moreno, S. N. J. and Striepen, B. (2011). Apicoplast isoprenoid precursor synthesis and the molecular basis of fosmidomycin resistance in Toxoplasma gondii . Journal of Experimental Medicine 208, 15471559. doi: 10.1084/jem.20110039.Google Scholar
Norrby, R. (1978). A review of the penetration of antibiotics into CSF and its clinical significance. Scandinavian Journal of Infectious Diseases (Suppl. 4), 296309.Google Scholar
Ojo, K. K., Larson, E. T., Keyloun, K. R., Castaneda, L. J., Derocher, A. E., Inampudi, K. K., Kim, J. E., Arakaki, T. L., Murphy, R. C., Zhang, L., Napuli, A. J., Maly, D. J., Verlinde, C. L., Buckner, F. S., Parsons, M., Hol, W. G., Merritt, E. A. and Van Voorhis, W. C. (2010). Toxoplasma gondii calcium-dependent protein kinase 1 is a target for selective kinase inhibitors. Nature Structural and Molecular Biology 17, 602607. doi: 10.1038/nsmb.1818.CrossRefGoogle ScholarPubMed
Ojo, K. K., Arakaki, T. L., Napuli, A. J., Inampudi, K. K., Keyloun, K. R., Zhang, L., Hol, W. G., Verlinde, C. L., Merritt, E. A. and Van Voorhis, W. C. (2011). Structure determination of glycogen synthase kinase-3 from Leishmania major and comparative inhibitor structure-activity relationships with Trypanosoma brucei GSK-3. Molecular and Biochemical Parasitology 176, 98108. doi: 10.1016/j.molbiopara.2010.12.009.Google Scholar
Ojo, K. K., Pfander, C., Mueller, N. R., Burstroem, C., Larson, E. T., Bryan, C. M., Fox, A. M., Reid, M. C., Johnson, S. M., Murphy, R. C., Kennedy, M., Mann, H., Leibly, D. J., Hewitt, S. N., Verlinde, C. L., Kappe, S., Merritt, E. A., Maly, D. J., Billker, O. and Van Voorhis, W. C. (2012). Transmission of malaria to mosquitoes blocked by bumped kinase inhibitors. Journal of Clinical Investigation 122, 23012305. doi: 10.1172/JCI61822.Google Scholar
Ojo, K. K., Merritt, E. A., Maly, D. J. and Van Voorhis, W. C. (2013). Calcium-dependent protein kinases of Apicomplexan parasites as drug targets. In Protein Phosphorylation in Parasites: Novel Targets for Antiparasitic Intervention (ed. Doerig, C., Späth, G. and Wiese, M.), pp. 293316. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. doi: 10.1002/9783527675401.ch14.Google Scholar
Ojo, K. K., Eastman, R. T., Vidadala, R., Zhang, Z., Rivas, K. L., Choi, R., Lutz, J. D., Reid, M. C., Fox, A. M., Hulverson, M. A., Kennedy, M., Isoherranen, N., Kim, L. M., Comess, K. M., Kempf, D. J., Verlinde, C. L., Su, X. Z., Kappe, S. H., Maly, D. J., Fan, E. and Van Voorhis, W. C. (2014). A specific inhibitor of PfCDPK4 blocks malaria transmission: chemical-genetic validation. Journal of Infectious Diseases 209, 275284. doi: 10.1093/infdis/jit522.Google Scholar
Reeves, D. S. and Wilkinson, P. J. (1979). The pharmacokinetics of trimethoprim and trimethoprim/sulphonamide combinations, including penetration into body tissues. Infection 7 (Suppl. 4), S330S341.Google Scholar
Seeliger, M. A., Young, M., Henderson, M. N., Pellicena, P., King, D. S., Falick, A. M. and Kuriyan, J. (2005). High yield bacterial expression of active c-Abl and c-Src tyrosine kinases. Protein Science 14, 31353139. doi: 10.1110/ps.051750905.Google Scholar
Studier, F. W. (2005). Protein production by auto-induction in high density shaking cultures. Protein Expression and Purification 41, 207234.Google Scholar
Tenter, A. M., Heckeroth, A. R. and Weiss, L. M. (2000). Toxoplasma gondii: from animals to humans. International Journal for Parasitology 30, 12171258.Google Scholar
Vidadala, R. S., Ojo, K. K., Johnson, S. M., Zhang, Z., Leonard, S. E., Mitra, A., Choi, R., Reid, M. C., Keyloun, K. R., Fox, A. M., Kennedy, M., Silver-Brace, T., Hume, J. C., Kappe, S., Verlinde, C. L., Fan, E., Merritt, E. A., Van Voorhis, W. C. and Maly, D. J. (2014). Development of potent and selective Plasmodium falciparum calcium-dependent protein kinase 4 (PfCDPK4) inhibitors that block the transmission of malaria to mosquitoes. European Journal of Medicinal Chemistry 74C, 562573.Google Scholar
World Health Organization (2013). World Malaria Report 2013. 1–2. Publications of the World Health Organization, Geneva, Switzerland.Google Scholar
Zhang, J. H., Chung, T. D. and Oldenburg, K. R. (1999). A simple statistical parameter for use in evaluation and validation of high throughput screening assays. Journal of Biomolecular Screening 4, 6773.Google Scholar
Zhang, Z., Ojo, K. K., Johnson, S. M., Larson, E. T., He, P., Geiger, J. A., Castellanos-Gonzalez, A., White, A. C., Parsons, M., Merritt, E. A., Maly, D. J., Verlinde, C. L., Van Voorhis, W. C. and Fan, E. (2012). Benzoylbenzimidazole-based selective inhibitors targeting Cryptosporidium parvum and Toxoplasma gondii calcium-dependent protein kinase-1. Bioorganic and Medicinal Chemistry Letters 22, 52645267. doi: 10.1016/j.bmcl.2012.06.050.Google Scholar