Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T17:31:15.494Z Has data issue: false hasContentIssue false

Hsp90: a chaperone for HIV-1

Published online by Cambridge University Press:  24 April 2014

JUN SIONG LOW
Affiliation:
The Wohl Virion Centre, MRC Centre for Medical Molecular Virology, Division of Infection & Immunity, UCL, Cruciform Building, 90 Gower Street, London WC1E 6BT, UK
ARIBERTO FASSATI*
Affiliation:
The Wohl Virion Centre, MRC Centre for Medical Molecular Virology, Division of Infection & Immunity, UCL, Cruciform Building, 90 Gower Street, London WC1E 6BT, UK
*
* Corresponding author: The Wohl Virion Centre, MRC Centre for Medical Molecular Virology, Division of Infection & Immunity, UCL, Cruciform Building, 90 Gower Street, London WC1E 6BT, UK. E-mail: a.fassati@ucl.ac.uk

Summary

HIV-1 replication has been intensively investigated over the past 30 years. Hsp90 is one of the most abundant proteins in human cells, important in the formation and function of several protein complexes that maintain cell homeostasis. Remarkably, the impact of Hsp90 on HIV-1 infection has started to be appreciated only recently. Hsp90 has been shown to (a) promote HIV-1 gene expression in acutely infected cells, (b) localize at the viral promoter DNA, (c) mediate enhanced replication in conditions of hyperthermia and (d) activate the P-TEFb complex, which is essential for efficient HIV-1 transcription. Hsp90 has been implicated in buffering deleterious mutations of the viral core and in the regulation of innate and acquired immune responses to HIV-1 infection. Therefore, Hsp90 is an important host factor promoting several steps of the HIV-1 life cycle. Several small Hsp90 inhibitors are in Phase II clinical trials for human cancers and might potentially be used to inhibit HIV-1 infection at multiple levels.

Type
Special Issue Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Archin, N. M., Liberty, A. L., Kashuba, A. D., Choudhary, S. K., Kuruc, J. D., Crooks, A. M., Parker, D. C., Anderson, E. M., Kearney, M. F., Strain, M. C., Richman, D. D., Hudgens, M. G., Bosch, R. J., Coffin, J. M., Eron, J. J., Hazuda, D. J. and Margolis, D. M. (2012). Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 487, 482485. doi: 10.1038/nature11286.CrossRefGoogle ScholarPubMed
Baldauf, H. M., Pan, X., Erikson, E., Schmidt, S., Daddacha, W., Burggraf, M., Schenkova, K., Ambiel, I., Wabnitz, G., Gramberg, T., Panitz, S., Flory, E., Landau, N. R., Sertel, S., Rutsch, F., Lasitschka, F., Kim, B., König, R., Fackler, O. T. and Keppler, O. T. (2012). SAMHD1 restricts HIV-1 infection in resting CD4(+) T cells. Nature Medicine 18, 16821689. doi: 10.1038/nm.2964.CrossRefGoogle ScholarPubMed
Berger, E. A., Murphy, P. M. and Farber, J. M. (1999). Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annual Review of Immunology 17, 657700. doi: 10.1146/annurev.immunol.17.1.657.CrossRefGoogle ScholarPubMed
Bieniasz, P. D., Grdina, T. A., Bogerd, H. P. and Cullen, B. R. (1999). Recruitment of cyclin T1/P-TEFb to an HIV type 1 long terminal repeat promoter proximal RNA target is both necessary and sufficient for full activation of transcription. Proceedings of the National Academy of Sciences USA 96, 77917796. doi: 10.1073/pnas.96.14.7791.CrossRefGoogle Scholar
Borrow, P. (2011). Innate immunity in acute HIV-1 infection. Current Opinion in HIV and AIDS 6, 353363. doi: 10.1097/COH.0b013e3283495996.CrossRefGoogle ScholarPubMed
Boukli, N. M., Shetty, V., Cubano, L., Ricaurte, M., Coelho-Dos-Reis, J., Nickens, Z., Shah, P., Talal, A. H., Philip, R. and Jain, P. (2012). Unique and differential protein signatures within the mononuclear cells of HIV-1 and HCV mono-infected and co-infected patients. Clinical Proteomics 9, 11. doi: 10.1186/1559-0275-9-11.CrossRefGoogle ScholarPubMed
Bouwmeester, T., Bauch, A., Ruffner, H., Angrand, P.-O., Bergamini, G., Croughton, K., Cruciat, C., Eberhard, D., Gagneur, J., Ghidelli, S., Hopf, C., Huhse, B., Mangano, R., Michon, A.-M., Schirle, M., Schlegl, J., Schwab, M., Stein, M. A., Bauer, A., Casari, G., Drewes, G., Gavin, A.-C., Jackson, D. B., Joberty, G., Neubauer, G., Rick, J., Kuster, B. and Superti-Furga, G. (2004). A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nature Cell Biology 6, 97105. doi: 10.1038/ncb1086.CrossRefGoogle ScholarPubMed
Brenchley, J. M., Schacker, T. W., Ruff, L. E., Price, D. A., Taylor, J. H., Beilman, G. J., Nguyen, P. L., Khoruts, A., Larson, M., Haase, A. T. and Douek, D. C. (2004). CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. Journal of Experimental Medicine 200, 749759. doi: 10.1084/jem.20040874.CrossRefGoogle ScholarPubMed
Briant, L. (2011). HIV-1 assembly, release and maturation. World Journal of AIDS 1, 111130. doi: 10.4236/wja.2011.14017.CrossRefGoogle Scholar
Bukrinsky, M. I., Sharova, N., Dempsey, M. P., Stanwick, T. L., Bukrinskaya, A. G., Haggerty, S. and Stevenson, M. (1992). Active nuclear import of human immunodeficiency virus type 1 preintegration complexes. Proceedings of the National Academy of Sciences USA 89, 65806584.CrossRefGoogle ScholarPubMed
Buzon, M. J., Massanella, M., Llibre, J. M., Esteve, A., Dahl, V., Puertas, M. C., Gatell, J. M., Domingo, P., Paredes, R., Sharkey, M., Palmer, S., Stevenson, M., Clotet, B., Blanco, J. and Martinez-Picado, J. (2010). HIV-1 replication and immune dynamics are affected by raltegravir intensification of HAART-suppressed subjects. Nature Medicine 16, 460465. doi: 10.1038/nm.2111.CrossRefGoogle ScholarPubMed
Chan, J. K. L. and Greene, W. C. (2011). NF-κB/Rel: agonist and antagonist roles in HIV-1 latency. Current Opinion in HIV and AIDS 6, 1218. doi: 10.1097/COH.0b013e32834124fd.CrossRefGoogle ScholarPubMed
Chun, T., Finzi, D. and Margolick, J. (1995). In vivo fate of HIV-1-infected T cells: quantitative analysis of the transition to stable latency. Nature Medicine 1, 12841290.CrossRefGoogle ScholarPubMed
Chun, T., Carruth, L., Finzi, D. and Shen, X. (1997). Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 246, 170170. doi: 10.1038/246170a0.Google Scholar
Colin, L. and van Lint, C. (2009). Molecular control of HIV-1 postintegration latency: implications for the development of new therapeutic strategies. Retrovirology 6, 111. doi: 10.1186/1742-4690-6-111.CrossRefGoogle ScholarPubMed
Csermely, P. and Schnaider, T. (1998). The 90-kDa molecular chaperone family : structure, function, and clinical applications. A comprehensive review. Pharmacology and Therapeutics 79, 129168.CrossRefGoogle ScholarPubMed
Descours, B., Cribier, A., Chable-Bessia, C., Ayinde, D., Rice, G., Crow, Y., Yatim, A., Schwartz, O., Laguette, N. and Benkirane, M. (2012). SAMHD1 restricts HIV-1 reverse transcription in quiescent CD4(+) T-cells. Retrovirology 9, 87. doi: 10.1186/1742-4690-9-87.CrossRefGoogle ScholarPubMed
Donahue, D. A. and Wainberg, M. A. (2013). Cellular and molecular mechanisms involved in the establishment of HIV-1 latency. Retrovirology 10, 11. doi: 10.1186/1742-4690-10-11.CrossRefGoogle ScholarPubMed
Durand, C. M., Blankson, J. N. and Siliciano, R. F. (2012). Developing strategies for HIV-1 eradication. Trends in Immunology 33, 554562. doi: 10.1016/j.it.2012.07.001.CrossRefGoogle ScholarPubMed
Dutta, R. and Inouye, M. (2000). GHKL, an emergent ATPase/kinase superfamily. Trends in Biochemical Sciences 25, 2428. doi: 10.1016/S0968-0004(99)01503-0.CrossRefGoogle ScholarPubMed
Emerman, M. (1998). HIV-1 regulatory/accessory genes: keys to unraveling viral and host cell biology. Science 280, 18801884. doi: 10.1126/science.280.5371.1880.CrossRefGoogle ScholarPubMed
Fassati, A. (2006). HIV infection of non-dividing cells: a divisive problem. Retrovirology 3, 74. doi: 10.1186/1742-4690-3-74.CrossRefGoogle Scholar
Fassati, A. (2012). Multiple roles of the capsid protein in the early steps of HIV-1 infection. Virus Research 170, 1524. doi: 10.1016/j.virusres.2012.09.012.CrossRefGoogle ScholarPubMed
Finzi, D., Hermankova, M., Pierson, T., Carruth, L. M., Buck, C., Chaisson, R. E., Quinn, T. C., Chadwick, K., Margolick, J., Brookmeyer, R., Gallant, J., Markowitz, M., Ho, D. D., Richman, D. D. and Siliciano, R. F. (1997). Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278, 12951300. doi: 10.1126/science.278.5341.1295.CrossRefGoogle ScholarPubMed
Flateau, C., Le Loup, G. and Pialoux, G. (2011). Consequences of HIV infection on malaria and therapeutic implications: a systematic review. Lancet Infectious Diseases 11, 541556. doi: 10.1016/S1473-3099(11)70031-7.CrossRefGoogle ScholarPubMed
Floer, M., Bryant, G. O. and Ptashne, M. (2008). HSP90/70 chaperones are required for rapid nucleosome removal upon induction of the GAL genes of yeast. Proceedings of the National Academy of Sciences USA 105, 29752980. doi: 10.1073/pnas.0800053105.CrossRefGoogle ScholarPubMed
Freed, E. O. and Martin, M. A. (2001). HIVs and their replication. In Fields Virology, 4th Edn. (ed. Knipe, D. M. and Howley, P. M.), pp. 19712042. Lippincott Williams and Wilkins, Philadelphia, USA.Google Scholar
Freeman, B. C. and Yamamoto, K. R. (2002). Disassembly of transcriptional regulatory complexes by molecular chaperones. Science 296, 22322235. doi: 10.1126/science.1073051.CrossRefGoogle ScholarPubMed
Garrus, J. E., von Schwedler, U. K., Pornillos, O. W., Morham, S. G., Zavitz, K. H., Wang, H. E., Wettstein, D. A., Stray, K. M., Côté, M., Rich, R. L., Myszka, D. G. and Sundquist, W. I. (2001). Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107, 5565.CrossRefGoogle ScholarPubMed
Geller, R., Vignuzzi, M., Andino, R. and Frydman, J. (2007). Evolutionary constraints on chaperone-mediated folding provide an antiviral approach refractory to development of drug resistance. Genes and Development 21, 195205. doi: 10.1101/gad.1505307.CrossRefGoogle ScholarPubMed
Giorgi, J. V., Hultin, L. E., McKeating, J. A., Johnson, T. D., Owens, B., Jacobson, L. P., Shih, R., Lewis, J., Wiley, D. J., Phair, J. P., Wolinsky, S. M. and Detels, R. (1999). Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage. Journal of Infectious Diseases 179, 859870.CrossRefGoogle ScholarPubMed
Götte, M. (2012). The distinct contributions of fitness and genetic barrier to the development of antiviral drug resistance. Current Opinion in Virology 2, 644650. doi: 10.1016/j.coviro.2012.08.004.CrossRefGoogle Scholar
Grimson, A., Srivastava, M., Fahey, B., Woodcroft, B. J., Chiang, H. R., King, N., Degnan, B. M., Rokhsar, D. S. and Bartel, D. P. (2008). Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 455, 11931197. doi: 10.1038/nature07415.CrossRefGoogle ScholarPubMed
Hakre, S., Chavez, L., Shirakawa, K. and Verdin, E. (2011). Epigenetic regulation of HIV latency. Current Opinion in HIV and AIDS 6, 1924. doi: 10.1097/COH.0b013e3283412384.CrossRefGoogle ScholarPubMed
Hakre, S., Chavez, L., Shirakawa, K. and Verdin, E. (2012). HIV latency: experimental systems and molecular models. FEMS Microbiology Reviews 36, 706716. doi: 10.1111/j.1574-6976.2012.00335.x.CrossRefGoogle ScholarPubMed
Hartl, F. (1996). Molecular chaperones in cellular protein folding. Nature 381, 571580. doi: 10.1038/381571a0.CrossRefGoogle ScholarPubMed
Hashimoto, K., Baba, M., Gohnai, K., Sato, M. and Shigeta, S. (1996). Heat shock induces HIV-1 replication in chronically infected promyelocyte cell line OM10.1. Archives of Virology 1, 439447.CrossRefGoogle Scholar
Ivanchenko, S., Godinez, W. J., Lampe, M., Kräusslich, H.-G., Eils, R., Rohr, K., Bräuchle, C., Müller, B. and Lamb, D. C. (2009). Dynamics of HIV-1 assembly and release. PLoS Pathogens 5, e1000652. doi: 10.1371/journal.ppat.1000652.CrossRefGoogle ScholarPubMed
Joshi, P. and Stoddart, C. A. (2011). Impaired infectivity of ritonavir-resistant HIV is rescued by heat shock protein 90AB1. Journal of Biological Chemistry 286, 2458124592. doi: 10.1074/jbc.M111.248021.CrossRefGoogle ScholarPubMed
Joshi, P., Sloan, B., Torbett, B. E. and Stoddart, C. A. (2013). Heat shock protein 90AB1 and hyperthermia rescue infectivity of HIV with defective cores. Virology 436, 162172. doi: 10.1016/j.virol.2012.11.005.CrossRefGoogle ScholarPubMed
Kouyos, R. D., Leventhal, G. E., Hinkley, T., Haddad, M., Whitcomb, J. M., Petropoulos, C. J. and Bonhoeffer, S. (2012). Exploring the complexity of the HIV-1 fitness landscape. PLoS Genetics 8, e1002551. doi: 10.1371/journal.pgen.1002551.CrossRefGoogle ScholarPubMed
Krebs, F., Hogan, T., Quiterio, S., Gartner, S. and Wigdahl, B. (2001). Lentiviral LTR-directed expression, sequence variation, and disease pathogenesis. In HIV Sequence Compendium 2001. Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA, pp. 2970.Google Scholar
Kwong, P. D., Wyatt, R., Robinson, J., Sweet, R. W., Sodroski, J. and Hendrickson, W. A. (1998). Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393, 648659. doi: 10.1038/31405.CrossRefGoogle Scholar
Lang, W., Perkins, H. and Anderson, R. (1989). Patterns of T lymphocyte changes with human immunodeficiency virus infection: from seroconversion to the development of AIDS. Journal of Acquired Immune Deficiency Syndromes 2, 6369.Google Scholar
Lazaro, E., Kadie, C. and Stamegna, P. (2011). Variable HIV peptide stability in human cytosol is critical to epitope presentation and immune escape. Journal of Clinical Investigations 121, 24802492. doi: 10.1172/JCI44932DS1.CrossRefGoogle ScholarPubMed
Lee, M. N., Roy, M., Ong, S.-E., Mertins, P., Villani, A.-C., Li, W., Dotiwala, F., Sen, J., Doench, J. G., Orzalli, M. H., Kramnik, I., Knipe, D. M., Lieberman, J., Carr, S. A. and Hacohen, N. (2013). Identification of regulators of the innate immune response to cytosolic DNA and retroviral infection by an integrative approach. Nature Immunology 14, 179185. doi: 10.1038/ni.2509.CrossRefGoogle ScholarPubMed
Li, J., Soroka, J. and Buchner, J. (2012). The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. Biochimica et Biophysica Acta 1823, 624635.CrossRefGoogle ScholarPubMed
Mahmoudi, T., Parra, M., Vries, R. G. J., Kauder, S. E., Verrijzer, C. P., Ott, M. and Verdin, E. (2006). The SWI/SNF chromatin-remodeling complex is a cofactor for Tat transactivation of the HIV promoter. Journal of Biological Chemistry 281, 1996019968. doi: 10.1074/jbc.M603336200.CrossRefGoogle ScholarPubMed
Mansky, L. M. and Temin, H. M. (1995). Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. Journal of Virology 69, 50875094.CrossRefGoogle ScholarPubMed
Martin-Serrano, J., Zang, T. and Bieniasz, P. D. (2001). HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nature Medicine 7, 13131319. doi: 10.1038/nm1201-1313.CrossRefGoogle ScholarPubMed
Matreyek, K. A. and Engelman, A. (2013). Viral and cellular requirements for the nuclear entry of retroviral preintegration nucleoprotein complexes. Viruses 5, 24832511. doi: 10.3390/v5102483.CrossRefGoogle ScholarPubMed
Michie, C., McLean, A., Alcock, C. and Beverley, P. (1992). Lifespan of human lymphocyte subsets defined by CD45 isoforms. Nature 360, 264265. doi: 10.1038/360264a0.CrossRefGoogle ScholarPubMed
Nabel, G. and Baltimore, D. (1987). An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 326, 711713. doi: 10.1038/326711a0.CrossRefGoogle ScholarPubMed
O'Keeffe, B., Fong, Y., Chen, D., Zhou, S. and Zhou, Q. (2000). Requirement for a kinase-specific chaperone pathway in the production of a Cdk9/cyclin T1 heterodimer responsible for P-TEFb-mediated tat stimulation of HIV-1 transcription. Journal of Biological Chemistry 275, 279287. doi: 10.1074/jbc.275.1.279.CrossRefGoogle ScholarPubMed
Palella, F. J. Jr., Delaney, K. M., Moorman, A. C., Loveless, M. O., Fuhrer, J., Satten, G. A., Aschman, D. J. and Holmberg, S. D. (1998). Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. New England Journal of Medicine 339, 853860. doi: 10.1056/NEJM199808063390612.CrossRefGoogle Scholar
Palmer, S., Maldarelli, F., Wiegand, A., Bernstein, B., Hanna, G. J., Brun, S. C., Kempf, D. J., Mellors, J. W., Coffin, J. M. and King, M. S. (2008). Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy. Proceedings of the National Academy of Sciences USA 105, 38793884. doi: 10.1073/pnas.0800050105.CrossRefGoogle ScholarPubMed
Pearl, L. H. and Prodromou, C. (2006). Structure and mechanism of the Hsp90 molecular chaperone machinery. Annual Review of Biochemistry 75, 271294. doi: 10.1146/annurev.biochem.75.103004.142738.CrossRefGoogle ScholarPubMed
Pereira, L., Bentley, K., Peeters, A., Churchill, M. J. and Deacon, N. J. (2000). A compilation of cellular transcription factor interactions with the HIV-1 LTR promoter. Nucleic Acids Research 28, 663668. doi: 10.1093/nar/28.3.663.CrossRefGoogle ScholarPubMed
Pigliucci, M. (2003). Epigenetics is back! Hsp90 and phenotypic variation. Cell Cycle 2, 3435. doi: 10.4161/cc.2.1.274.CrossRefGoogle ScholarPubMed
Pittet, J. F., Lee, H., Pespeni, M., O'Mahony, A., Roux, J. and Welch, W. J. (2005). Stress-induced inhibition of the NF-kappaB signaling pathway results from the insolubilization of the IkappaB kinase complex following its dissociation from heat shock protein 90. Journal of Immunology 174, 384394.CrossRefGoogle ScholarPubMed
Pollard, V. and Malim, M. (1998). The HIV-1 Rev Protein. Nature Reviews Microbiology 6, 491532. doi: 10.1038/nrmicro1819.Google Scholar
Quashie, P. K., Mesplède, T. and Wainberg, M. A. (2013). Evolution of HIV integrase resistance mutations. Current Opinion in Infectious Diseases 26, 4349. doi: 10.1097/QCO.0b013e32835ba81c.CrossRefGoogle ScholarPubMed
Queitsch, C., Sangster, T. A. and Lindquist, S. (2002). Hsp90 as a capacitor of phenotypic variation. Nature 417, 618624. doi: 10.1038/nature749.CrossRefGoogle ScholarPubMed
Ramratnam, B., Mittler, J. E., Zhang, L., Boden, D., Hurley, A., Fang, F., Macken, C. A., Perelson, A. S., Markowitz, M. and Ho, D. D. (2000). The decay of the latent reservoir of replication-competent HIV-1 is inversely correlated with the extent of residual viral replication during prolonged anti-retroviral therapy. Nature Medicine 6, 8285. doi: 10.1038/71577.CrossRefGoogle ScholarPubMed
Re, M. C., Furlini, G. and La Placa, M. (1989). Rapid detection of HIV-1 in clinical samples by co-culture with heat-shocked cells. Journal of Virological Methods 26, 313317.CrossRefGoogle ScholarPubMed
Ringrose, J. H., Jeeninga, R. E., Berkhout, B. and Speijer, D. (2008). Proteomic studies reveal coordinated changes in T-cell expression patterns upon infection with human immunodeficiency virus type 1. Journal of Virology 82, 43204330. doi: 10.1128/JVI.01819-07.CrossRefGoogle ScholarPubMed
Roesch, F., Meziane, O., Kula, A., Nisole, S., Porrot, F., Anderson, I., Mammano, F., Fassati, A., Marcello, A., Benkirane, M. and Schwartz, O. (2012). Hyperthermia stimulates HIV-1 replication. PLoS Pathogens 8, e1002792. doi: 10.1371/journal.ppat.1002792.CrossRefGoogle ScholarPubMed
Roy, S., Delling, U., Chen, C. H., Rosen, C. A. and Sonenberg, N. (1990). A bulge structure in HIV-1 TAR RNA is required for Tat binding and Tat-mediated trans-activation. Genes and Development 4, 13651373. doi: 10.1101/gad.4.8.1365.CrossRefGoogle ScholarPubMed
Rutherford, S. L. and Lindquist, S. (1998). Hsp90 as a capacitor for morphological evolution. Nature 396, 336342. doi: 10.1038/24550.CrossRefGoogle ScholarPubMed
Sáez-Cirión, A., Bacchus, C., Hocqueloux, L., Avettand-Fenoel, V., Girault, I., Lecuroux, C., Potard, V., Versmisse, P., Melard, A., Prazuck, T., Descours, B., Guergnon, J., Viard, J. P., Boufassa, F., Lambotte, O., Goujard, C., Meyer, L., Costagliola, D., Venet, A., Pancino, G., Autran, B. and Rouzioux, C. (2013). Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy: ANRS VISCONTI Study. PLoS Pathogens 9, e1003211. doi: 10.1371/journal.ppat.1003211.CrossRefGoogle ScholarPubMed
Sangster, T. A., Queitsch, C. and Lindquist, S. (2003). Hsp90 and chromatin: where is the link? Cell Cycle 2, 165167. doi: 10.4161/cc.2.3.400.CrossRefGoogle ScholarPubMed
Sawarkar, R., Sievers, C. and Paro, R. (2012). Hsp90 globally targets paused RNA polymerase to regulate gene expression in response to environmental stimuli. Cell 149, 807818. doi: 10.1016/j.cell.2012.02.061.CrossRefGoogle ScholarPubMed
Schlesinger, M. J. (1990). Heat shock proteins. Journal of Biolological Chemistry 265, 1211112114.CrossRefGoogle ScholarPubMed
Shim, H. Y., Quan, X., Yi, Y.-S. and Jung, G. (2011). Heat shock protein 90 facilitates formation of the HBV capsid via interacting with the HBV core protein dimers. Virology 410, 161169. doi: 10.1016/j.virol.2010.11.005.CrossRefGoogle ScholarPubMed
Shimp, S. K., Chafin, C. B., Regna, N. L., Hammond, S. E., Read, M. A., Caudell, D. L., Rylander, M. and Reilly, C. M. (2012 a). Heat shock protein 90 inhibition by 17-DMAG lessens disease in the MRL/lpr mouse model of systemic lupus erythematosus. Cellular and Molecular Immunology 9, 255266. doi: 10.1038/cmi.2012.5.CrossRefGoogle ScholarPubMed
Shimp, S. K., Parson, C. D., Regna, N. L., Thomas, A. N., Chafin, C. B., Reilly, C. M. and Nichole Rylander, M. (2012 b). HSP90 inhibition by 17-DMAG reduces inflammation in J774 macrophages through suppression of Akt and nuclear factor-κB pathways. Inflammation Research 61, 521533. doi: 10.1007/s00011-012-0442-x.CrossRefGoogle ScholarPubMed
Siliciano, J. D., Kajdas, J., Finzi, D., Quinn, T. C., Chadwick, K., Margolick, J. B., Kovacs, C., Gange, S. J. and Siliciano, R. F. (2003). Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nature Medicine 9, 727728. doi: 10.1038/nm880.CrossRefGoogle ScholarPubMed
Siliciano, R. F. and Greene, W. C. (2011). HIV latency. Cold Spring Harbor Perspectives in Medicine 1, a007096. doi: 10.1101/cshperspect.a007096.CrossRefGoogle ScholarPubMed
Sollars, V., Lu, X., Xiao, L., Wang, X., Garfinkel, M. D. and Ruden, D. M. (2003). Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution. Nature Genetics 33, 7074. doi: 10.1038/ng1067.CrossRefGoogle ScholarPubMed
Solit, D. B. and Chiosis, G. (2008). Development and application of Hsp90 inhibitors. Drug Discovery Today 13, 3843. doi: 10.1016/j.drudis.2007.10.007.CrossRefGoogle ScholarPubMed
Specchia, V., Piacentini, L., Tritto, P., Fanti, L., D'Alessandro, R., Palumbo, G., Pimpinelli, S. and Bozzetti, M. P. (2010). Hsp90 prevents phenotypic variation by suppressing the mutagenic activity of transposons. Nature 463, 662665. doi: 10.1038/nature08739.CrossRefGoogle ScholarPubMed
Stanley, S., Bressler, P. B., Poli, G. and Fauci, A. S. (1990). Heat shock induction of HIV production from chronically infected promonocytic and T cell lines. Journal of Immunology 145, 11201126.CrossRefGoogle ScholarPubMed
Stebbins, C. E., Russo, A. A., Schneider, C., Rosen, N., Hartl, F. U. and Pavletich, N. P. (1997). Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 89, 239250. doi: 10.1016/S0092-8674(00)80203-2.CrossRefGoogle ScholarPubMed
Stuchell, M. D., Garrus, J. E., Müller, B., Stray, K. M., Ghaffarian, S., McKinnon, R., Kräusslich, H.-G., Morham, S. G. and Sundquist, W. I. (2004). The human endosomal sorting complex required for transport (ESCRT-I) and its role in HIV-1 budding. Journal of Biological Chemistry 279, 3605936071. doi: 10.1074/jbc.M405226200.CrossRefGoogle ScholarPubMed
Sundquist, W. I. and Kräusslich, H.-G. (2012). HIV-1 assembly, budding, and maturation. Cold Spring Harbor Perspectives in Medicine 2, a006924. doi: 10.1101/cshperspect.a006924.CrossRefGoogle ScholarPubMed
Tariq, M., Nussbaumer, U., Chen, Y., Beisel, C. and Paro, R. (2009). Trithorax requires Hsp90 for maintenance of active chromatin at sites of gene expression. Proceedings of the National Academy of Sciences USA 106, 11571162. doi: 10.1073/pnas.0809669106.CrossRefGoogle ScholarPubMed
Tazi, J., Bakkour, N., Marchand, V., Ayadi, L., Aboufirassi, A. and Branlant, C. (2010). Alternative splicing: regulation of HIV-1 multiplication as a target for therapeutic action. FEBS Journal 277, 867876. doi: 10.1111/j.1742-4658.2009.07522.x.CrossRefGoogle ScholarPubMed
Tréand, C., Du Chéné, I., Brès, V., Kiernan, R., Benarous, R., Benkirane, M. and Emiliani, S. (2006). Requirement for SWI/SNF chromatin-remodeling complex in Tat-mediated activation of the HIV-1 promoter. EMBO Journal 25, 16901699. doi: 10.1038/sj.emboj.7601074.CrossRefGoogle ScholarPubMed
UNAIDS (2013). UNAIDS Report on the Global AIDS Epidemic. www.unaids.org/globalreport/Global_report.htm Google Scholar
Usami, Y., Popov, S., Popova, E., Inoue, M., Weissenhorn, W. and Göttlinger, H. G. (2009). The ESCRT pathway and HIV-1 budding. Biochemical Society Transactions 37, 181184. doi: 10.1042/BST0370181.CrossRefGoogle ScholarPubMed
Van Lint, C., Bouchat, S. and Marcello, A. (2013). HIV-1 transcription and latency: an update. Retrovirology 10, 67. doi: 10.1186/1742-4690-10-67.CrossRefGoogle ScholarPubMed
Vozzolo, L., Loh, B., Gane, P. J., Tribak, M., Zhou, L., Anderson, I., Nyakatura, E., Jenner, R. G., Selwood, D. and Fassati, A. (2010). Gyrase B inhibitor impairs HIV-1 replication by targeting Hsp90 and the capsid protein. Journal of Biological Chemistry 285, 3931439328. doi: 10.1074/jbc.M110.155275.CrossRefGoogle ScholarPubMed
Wainberg, M. A. (2009). Two standards of care for HIV: why are Africans being short-changed? Retrovirology 6, 109. doi: 10.1186/1742-4690-6-109.CrossRefGoogle ScholarPubMed
Wei, P., Garber, M. E., Fang, S. M., Fischer, W. H. and Jones, K. A. (1998). A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 92, 451462. doi: 10.1016/S0092-8674(00)80939-3.CrossRefGoogle ScholarPubMed
Wong, K. S. K. and Houry, W. A. (2006). Hsp90 at the crossroads of genetics and epigenetics. Cell Research 16, 742749. doi: 10.1038/sj.cr.7310090.CrossRefGoogle ScholarPubMed
World Health Organization (2012). Global Tuberculosis Report 2012.Google Scholar
Wyatt, R. (1998). The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science 280, 18841888. doi: 10.1126/science.280.5371.1884.CrossRefGoogle ScholarPubMed
Zack, J. A., Arrigo, S. J., Weitsman, S. R., Go, A. S., Haislip, A. and Chen, I. S. Y. (1990). HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell 61, 213222. doi: 10.1016/0092-8674(90)90802-L.CrossRefGoogle ScholarPubMed
Zhao, R., Davey, M., Hsu, Y.-C., Kaplanek, P., Tong, A., Parsons, A. B., Krogan, N., Cagney, G., Mai, D., Greenblatt, J., Boone, C., Emili, A. and Houry, W. A. (2005). Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the Hsp90 chaperone. Cell 120, 715727. doi: 10.1016/j.cell.2004.12.024.CrossRefGoogle ScholarPubMed